Research on the Main Structure of the Central Detector of Jiangmen Underground Neutrino Observatory (JUNO)
-
摘要: 江门中微子实验(JUNO)是继大亚湾中微子实验后人类对中微子的进一步探索,它将对三种中微子的质量进行测量排序。中心探测器是江门中微子实验的核心部件,用于捕捉核反应堆或其他途径产生的中微子。中心探测器整体形状为球形,分为内层结构和外层结构,其中内层结构为直径35.4 m(内径)的有机玻璃球壳,用于承装2万t用来捕捉中微子的液闪;外层结构除了要作为PMT(光电倍增管)的支撑载体,还要为内层有机玻璃球提供支撑;整个中心探测器结构通过柱子支撑于水池底部。
经过多方案比选,中心探测器选定单层型钢网壳作为其主体结构方案,它是由外层的型钢构件经纬向编织形成(构件之间螺栓连接)的单层网壳与内部的有机玻璃球体组成的整体,有机玻璃球体与外层网壳之间通过撑杆连接,网壳下部通过立柱与池底连接。中心探测器所使用的材料都必须是低本底(低放射性)的,如有机玻璃材料,不锈钢材料。所有与液闪和纯水接触的材料都要满足兼容性要求。因此,本方案采取S31608不锈钢、有机玻璃、A4-70不锈钢螺栓作为结构的主要材料形式。方案选取H型钢的截面形式,在自重计算时,将水的重度从不锈钢重度中减掉来考虑结构构件的浮力。为了准确计算有机玻璃球体的受力,采取荷载分算的形式,将有机玻璃球体的重力、内表面的压力和外表面的压力分开,以考虑有机玻璃球体厚度对浮力的影响。内外液面差是指上烟囱中液闪液面高出外部纯水液面的高度,这个液位差会在有机玻璃球内壁上附加一个恒定的均匀压力,局部抵消部分球体内外压力差,对撑杆受力有改善,但对总浮力的影响很少。在方案计算阶段考虑两种计算模型,一种是不考虑有机玻璃球体作用的单层网壳计算模型;一种是考虑与有机玻璃球体共同作用的单层网壳整体计算模型。
江门中微子实验中心探测器主体结构设计采用单层型钢网壳支撑内部有机玻璃球体方案,并在玻璃内外灌注非等密度液体,使得结构受力较为复杂,尤其是浮力的模拟和加载尤为复杂。另外有机玻璃的脆性和低可靠性也使得结构设计的安全裕量要求很高,主要是对撑杆内力、玻璃应力、单层网壳的稳定性等方面的控制。通过大量的方案计算,从用钢量、撑杆数量、撑杆内力、网壳内力和有机玻璃应力等几个方面对探测器结构进行了基于控制指标的优化,并对优化后的结构进行静力性能、稳定性、地震分析、节点有限元以及单点失效及公差分析,从各个方面对探测器结构的性能进行了详细分析,计算指标均满足要求。Abstract: The Central Detector of Jiangmen Underground Neutrino Observatory (JUNO) is a further exploration of neutrino after Daya Bay neutrino experiment. It will measure and rank the mass of three kinds of neutrino. The central detector is the core component of JUNO, which is used to capture the neutrino produced by nuclear reactor or other ways. The overall shape of the central detector is spherical, which is divided into inner layer structure and outer layer structure. The inner layer structure is a PMT shell with a diameter of 35. 4 m (inner diameter), which is used to hold 20 000 tons of liquid scintillation for capturing neutrinos; the outer structure is not only used as the support carrier of PMT (photomultiplier tube), but also provides support for the inner PMMA's sphere; the whole central detector structure is through the column supported at the bottom of the pool.
After the comparison and selection of multiple schemes, the center detector selects the single-layer steel reticulated shell as its main structure scheme. It is composed of a single-layer reticulated shell and an internal PMMA's sphere which are formed by the warp and weft braiding of the outer steel members (bolt connection between the components). The PMMA's sphere is connected with the outer shell through a strut, and the lower part of the shell is connected with the pool bottom through the column. The materials used in the central detector must be low background (low radioactivity), such as PMMA's sphere and stainless steel. All materials in contact with liquid flash and pure water shall meet the compatibility requirements. Therefore, s31608 stainless steel, PMMA's sphere and A4-70 stainless steel bolts are used as the main material forms of the structure. The section form of H-beam is selected, and the buoyancy of structural members is considered by reducing the weight of water from that of stainless steel. In this paper, in order to accurately calculate the force on the PMMA's sphere, the gravity of the PMMA's sphere, the pressure on the inner surface and the pressure on the outer surface are separately considered in the form of load calculation, so as to consider the influence of the thickness of the PMMA's sphere on the buoyancy. The internal and external liquid level difference refers to the height of liquid flash liquid level in the upper chimney higher than the external pure water level. This liquid level difference will add a constant uniform pressure on the inner wall of the PMMA's sphere, partially offset the internal and external pressure difference of some spheres, and improve the force of strut, but has little effect on the total buoyancy. In the scheme calculation stage, two calculation models are considered, one is the calculation model of single-layer reticulated shell without considering the effect of PMMA's sphere; the other is the overall calculation model of single-layer reticulated shell considering the interaction with PMMA's sphere.
The main structure of the detector in JUNO is designed to support the inner PMMA's sphere with a single-layer steel shell, and the inner and outer glass is filled with non-uniform density liquid, which makes the structural stress more complex, especially the simmulating and loading of buoyancy. In addition, due to the brittleness and low reliability of PMMA, the safety margin of structural design is required to be very high, mainly to control the internal force of strut, glass stress and stability of single-layer reticulated shell. Through a large number of program calculations, the detector structure is optimized based on the control index from the aspects of steel consumption, strut number, strut internal force, lattice shell internal force and plexiglass stress. The static performance, stability, seismic analysis, nodal finite element analysis, single point failure and tolerance analysis of the optimized structure are carried out, and the performance of the detector structure is improved from various aspects Detailed analysis shows that the calculation indexes meet the requirements. -
王元清,王综轶,杜新喜,等. 超大型中微子探测器有机玻璃球与不锈钢网壳方案的设计优化分析[J]. 工程力学,2016,33(3):10-17. 中国工程建设标准化协会. 不锈钢结构技术规程:CECS 410:2015[S]. 北京:中国计划出版社,2015. 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社,2016. 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018. 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7-2010[S]. 北京:中国建筑工业出版社,2010. 王综轶,王元清,杜新喜,等. 中微子探测器中不锈钢紧固件的承载性能试验[J]. 天津大学学报(自然科学与工程技术版), 2015(增刊1):110-114. 王综轶,王元清,周燕,等. 江门中微子探测器承载性能的影响因素分析[J]. 沈阳建筑大学学报(自然科学版),2015(3):418-425. 张高明,刘枫,宋涛. 江门中微子实验中心探测器结构方案咨询[R]. 北京:中国建筑科学研究院, 2014. 张高明,刘枫,宋涛. 江门中微子实验中心探测器结构方案优化[R]. 北京:中国建筑科学研究院,2016. 任记波. 中微子实验中心探测器主体结构考虑流固耦合的抗震分析[D]. 杭州:浙江大学,2017.
点击查看大图
计量
- 文章访问数: 295
- HTML全文浏览量: 50
- PDF下载量: 47
- 被引次数: 0