Effect of Microalloying Elements on Microstructure and Properties of 690 MPa Fire-Resistance Steel
-
摘要: 针对690 MPa级空冷贝氏体耐火钢目前存在的屈强比过高无法满足抗震性能,以及冲击韧性过低和高温600℃下屈服强度降低的问题,设计了两种成分的低碳贝氏体耐火钢,分别为低V高Nb+Ti和高V低Nb+Ti两种成分,目的是获得室温屈服强度大于690 MPa,屈强比小于0.85,高温600℃屈服强度大于室温屈服强度的2/3,即460 MPa,以及-40℃低温冲击韧性均值大于69 J的高强韧耐火钢。试验过程中首先在冶炼炉进行冶炼,后将铸锭加热到1 200℃以上保温,在900℃左右锻造,锻造完成后采用两阶段控制轧制工艺。为了改善试验钢的力学性能和显微组织,对试验钢采取最终热处理方法,热处理工艺采用正火空冷+回火空冷,正火温度选取Ac3以上30~50℃之间,回火温度采用贝氏体转变温度范围内的温度。对热轧态的试样和经过热处理后的试样进行对比分析,通过金相、扫描等对试样显微组织进行分析,通过常温力学拉伸试验、600℃高温拉伸试验和-40℃低温冲击试验,对试验钢的力学性能进行对比分析,同时对微合金元素Nb、V、Ti对过冷奥氏体连续冷却转变曲线(CCT曲线)的影响进行了研究分析。结果表明:通过微合金元素Nb、V、Ti的调整,能使F+P转变线明显右移,贝氏体转变线趋于扁平化,组织由原来的粒状贝氏体转变为粒状贝氏体与板条贝氏体的混合组织。通过增加V,降低Nb+Ti的含量,对热轧态的组织对比,发现可以获得的粒状贝氏体组织中M-A岛更加细小均匀,更有利于改善材料的塑韧性。对热处理后的试验钢的组织和性能进行对比发现,通过增加V,降低Nb+Ti的含量,组织由粒状贝氏体转变为粒状贝氏体与板条贝氏体的混合组织,而板条贝氏体对试验钢的力学性能有利。Y1试验钢中大块的粒状贝氏体组织对试验钢的低温冲击韧性不利,Y2试验钢中细小的粒状与板条状贝氏体的混合组织,能显著改善试验钢的冲击韧性。因此,在实际生产中,应尽量获得细化的板条贝氏体组织才能使材料的性能更好。与此同时,对比相同成分的热处理后的试验钢发现,回火温度对试验钢的屈服强度的影响更为明显,对抗拉强度影响较小,通过采取合理的调控回火温度,发现Y1试验钢在350℃时力学性能最佳,但高温屈服强度和低温冲击韧性不理想,而Y2试验钢在400℃时力学性能最佳。综上所述,Y2经过正火+400℃回火、1 h热处理工艺后具有优秀的综合性能,即抗拉强度为1 009 MPa、屈服强度为855 MPa,600℃的屈服强度为481 MPa,满足屈服强度大于室温屈服强度的2/3,-40℃冲击功均值为145 J,大于69 J,满足690 MPa级耐火钢的要求。
-
关键词:
- 690 MPa级耐火钢 /
- 微合金元素 /
- 力学性能 /
- 显微组织
Abstract: In view of the problems that the yield ratio of 690 MPa air-cooled bainite fire-resistant steel is too high to meet the seismic performance, as well as the impact toughness is too low and the yield strength at 600 ℃ is reduced, two kinds of low-carbon bainitic fire-resistant steels, low-V high Nb + Ti and high-v low Nb + Ti, were designed to obtain high strength and toughness fire-resistant steels with room temperature yield strength greater than 690 MPa, yield ratio less than 0. 85, high temperature yield strength at 600 ℃ greater than 2/3 of room temperature yield strength, which is 460 MPa, and low temperature impact toughness at - 0 ℃ greater than 69 J. During the test, the ingot was heated to above 1 200 ℃ for heat preservation and forged at about 900 ℃. After forging, the two-stage controlled rolling process was adopted. In order to improve the mechanical properties and microstructure of the test steel, the final heat treatment method was adopted. The heat treatment process was normalizing air cooling + tempering air cooling. The normalizing temperature was 30-50 ℃ above AC3, and the tempering temperature was in the range of bainite transformation temperature. The microstructure of the hot-rolled and heat-treated specimens was analyzed by metallography and scanning. The mechanical properties of the tested steel were analyzed by normal temperature tensile test, 600 ℃ high temperature tensile test and - 40 ℃ low temperature impact test. Meanwhile, the influence of Nb, V and Ti on CCT curve was studied. The results show that the F + P transition line is obviously shifted to the right and the bainite transition line tends to be flattened by adjusting the Microalloying elements Nb, V and Ti. The transformation structure changes from original granular bainite to a mixed structure of granular bainite and lath bainite. By increasing V and reducing the content of Nb + Ti, the microstructure of hot rolled bainite is compared. It is found that the M-A islands in the obtained granular bainite are finer and more uniform, which is more conducive to improving the plasticity and toughness of the material. By comparing the microstructure and properties of the heat-treated steel, it is found that by increasing V and decreasing Nb + Ti content, the microstructure changes from granular bainite to the mixed structure of granular bainite and lath bainite, and lath bainite is beneficial to the mechanical properties of the steel. The large granular bainite in Y1 test steel is disadvantageous to the low temperature impact toughness of the test steel. The mixed microstructure of fine granular bainite and lath bainite in Y2 test steel can significantly improve the impact toughness of the test steel. Therefore, in the actual production, it is necessary to obtain the refined lath bainite structure as far as possible in order to make the properties of the material better. At the same time, it is found that the tempering temperature has more obvious effect on the yield strength and less effect on the tensile strength of the test steel compared with the test steel after heat treatment of the same composition. By reasonably adjusting the tempering temperature, it is found that Y1 test steel has the best mechanical properties at 350 ℃, but the high temperature yield strength and low temperature impact toughness are not ideal, while Y2 test steel has the best mechanical properties at 400 ℃. In conclusion, after normalizing and tempering at 400 ℃ for 1 h, Y2 test steel has excellent comprehensive properties, that is, tensile strength is 1 009 MPa, yield strength is 855 MPa, yield strength at 600 ℃ is 481 MPa, which meets the requirements of yield strength greater than 2/3 of yield strength at room temperature, and average impact energy at -40 ℃ is 145 J greater than 69 J, which meets the requirements of 690 MPa grade refractory steel. -
王超伟.590FR耐火建筑钢微观组织和力学性能[J].热加工工艺,2015,44(20):192-194. 殷海荣,李阳.耐火钢耐火机理的研究[J].钢铁研究,2008(2):59-62. 黄磊.高强耐火钢组织与性能的研究[D].沈阳:东北大学,2010. 童明伟.钼钨铌对耐火建筑钢组织和性能的影响[D].武汉:武汉科技大学,2007. Otani K.Recent trend of technology for steel plates used in building construction[J].Nippon Steel Technical Report,1992,54:27-36. 党莹.低钼建筑用耐火钢组织和性能的研究[D].重庆:重庆大学,2007. 唐静.V、Nb对Mn-Mo-Ti系耐火钢CCT曲线及组织与性能的影响[J].金属热处理,2013,38(9):92-95. 康健.780 MPa级低屈强比建筑结构用钢组织调控与工艺开发[D].沈阳:东北大学,2012. 刘福明,薛礼,刘春明.V-N微合金化耐火钢中铁素体的形成与组织特征[J].材料热处理学报,2017,38(1):77-82. 王敏,郭淑兰,徐学东.轧后空冷低C贝氏体钢的组织与性能研究[J].热加工工艺,2011,40(16):177-178,181. 潘小强.合金元素Mo、V对耐火钢组织及性能的影响[D].重庆:重庆大学,2007. 刘庆春,雍岐龙,郑之旺.钒对耐火钢显微组织及高温性能的影响[J].钢铁,2016,51(7):76-80,94. 曹慧泉,颜慧成,夏政海,等.微合金元素对700 MPa级低碳贝氏体钢组织与性能的影响[J].钢铁钒钛,2009,30(4):27-31. 侯佳,涂勇.Mo含量对耐火建筑钢组织及性能的影响[J].热加工工艺,2015,44(14):101-103. 陈俊,陈晨,罗恒勇.Nb-V微合金化0.15~0.35Mo含量和轧制温度对建筑用耐火钢性能的影响[J].特殊钢,2019,40(3):49-52. 朱世佳.微量元素对建筑用耐火钢的组织与性能的影响[J].热加工工艺,2018,47(14):68-71. 李文韬,李正操,白秉哲.V对低合金MnSiCr空冷贝氏体/马氏体复相钢强韧性的影响[J].原子能科学技术,2010,44(增刊1):359-362.
点击查看大图
计量
- 文章访问数: 194
- HTML全文浏览量: 35
- PDF下载量: 10
- 被引次数: 0