Overall Stability Capacity Analysis of Long-Span Single-Layer Special-Shaped Shell
-
摘要: 周口店遗址第一地点(猿人洞)保护建筑工程为文物保护设施建筑,为保护北京人遗址猿人洞免受雨雪等灾害,在猿人洞上方建设大跨度保护棚,建筑外形由周边山体等高线回归后得到,为不规则空间曲面。主体结构为大跨度单层钢结构,在主体结构上下设叶片,上叶片局部做种植槽,种植攀爬植物,下叶片用玻璃钢模拟山体造型;植物长成后,将使工程的内外皆融入遗址环境之中,隐伏于树木掩映之下,使其与遗址浑然天成,最终达到建筑本身融入周围环境,恢复猿人洞数万年前形态的设计理念。
为实现对遗址的最小化干扰,尽量减小结构体量,减少对周围环境影响,主体结构采用大跨度单层异形钢壳体结构,单层网格结构厚度薄,为上下叶片的安装创造了条件。本工程大跨单层异形钢网壳纵向水平投影距离为79 m,横向水平投影距离为55 m,最大斜向跨度为83 m,基础高差为33 m,通过山顶和山脚两排铰接支座进行支撑。单层网格结构安全性常常受稳定性控制,结构缺陷和边界条件对稳定承载力的影响需进行深入分析。为准确评估本工程大跨单层异形钢网壳的整体稳定性,采用三维双重非线性有限元方法进行研究。
通过ANSYS软件分析了结构的整体稳定极限承载力,分析了缺陷幅值和不同缺陷分布形式以及弹簧支座刚度对结构整体稳定极限承载力的影响,通过荷载-位移全过程曲线得到了本工程异形钢网壳的稳定极限承载力。分析发现:本工程异形钢网壳为大跨度复杂空间结构,由于其结构本身高低起伏变化,为非理想壳体,其整体稳定极限承载力对缺陷分布形式及缺陷幅值不敏感,按JGJ 7—2010《空间网格结构技术规程》规定选用一阶屈曲模态分布形式并按斜向跨度的1/300对结构施加初始缺陷可以满足设计要求;本工程异形钢网壳的稳定极限承载力对边界条件比较敏感,为保证结构的整体稳定性应选择铰接支座,且在设计时应重点关注基础的抗推能力;本工程异形钢网壳杆件本身的缺陷对整体稳定极限承载力影响很小,为方便计算可仅考虑结构的整体初始缺陷;本工程异形钢网壳的整体稳定安全系数为3.58,满足JGJ 7—2010的要求,结构整体稳定性能有保证。
通过ANSYS软件分析了本工程异形钢网壳的动力稳定性能,分析表明:本工程异形钢网壳动力稳定性能比较好,结构动力失稳时的地震动幅值可达到0.8g。对本工程异形钢网壳典型构件施加单位力并进行特征值分析以得到构件的弹性屈曲荷载,再通过欧拉公式反算得到了构件的面外计算长度系数。分析表明,选取面外计算长度系数1.6完全满足结构设计要求,为用常规软件进行结构分析提供了取值依据。Abstract: As a cultural relic protection facility, the first site (Peking Man Cave) protection shield at Zhoukoudian Site is built to protect the main archaeological site from further weathering. The shield over the Peking Man Cave simulates the shape of the surrounding mountains and presents itself as irregular spatial surface. On the main long-span single-layer steel structure, double-layers blades are set. Sprawling herbs are planted in the grooves on the upper blades, and the lower blades are made by GFRP (glass fiber reinforced plastics) to model the rock texture. The structure will blend into the surrounding natural scenery from both inside and outside view angles when the plants thrive, and the design concepts for harmony and reconstruction of remote antiquity are realized.
In order to minimize the disturbance to the site and the surrounding environment, the main structure adopts a long-span single-layer special-shaped steel shell structure to control its volume. Due to the thinness, the single-layer grid structure provides more convenience for the double-layers blades installation. The global projection distance of the shield is 79 m in its longitudinal direction and 55 m in the transverse direction. The maximum oblique span is 83 m and the foundation height difference is 33 m. The shield is fixed by the hinge supports at the top and foot of the mountain. The safety of single-layer grid structure is often controlled by stability, which can be influenced by structural defects and boundary conditions. Three-dimensional and non-linear finite element methods are used to analyze and estimate the overall stability of the long-span single-layer special-shaped steel shell.
The stability ultimate capacity of the structure is analyzed by ANSYS software, and the influence factors of the stability ultimate capacity including the degree and distribution of overall structure defects as well as the stiffness of hinge support are investigated. According to the complete load-displacement curve, the stability ultimate capacity is confirmed. Analysis shows that the degree and distribution of overall structure defects have no obvious effect on the overall stability ultimate capacity as the shield is a complex spatial structure not an ideal shell, therefore, only the initial defect is taken into consideration for convenience of calculation. When initial defect of 1/300 of the oblique span is applied to the structure, and follow the first buckling modal shape distribution, the overall stability safety factor of the special-shaped shell is 3. 58, and the performance of the structure meets the requirements of Technical Code for Space Grid Structures (JGJ 7-2010). Analysis suggests hinge supports considering the significant effect of the boundary conditions on the stability ultimate capacity. The foundation anti-push resistance should be paid due attention to in design by the research.
The dynamic stability performance of the shield is analyzed by ANSYS software. Result shows that the special-shaped shell has satisfactory dynamic stability, and the damage seismic amplitude to cause dynamic instability can reach 0. 8g. The elastic buckling load of typical member of the special-shaped shell is obtained by applying unit force and eigenvalue analysis. The out-of-plane calculated length coefficient of members is determined as 1. 6 by inverse calculation of Euler formula, which meet the structural design requirements well and can be adopted for further reference.-
Key words:
- steel structure /
- single-layer shell /
- stability
-
[1] 马智刚, 崔光海,李增超,等. 周口店遗址第一地点(猿人洞)保护建筑结构设计[J]. 建筑结构,2020(12):64-69,76. [2] 中华人民共和国住房和城乡建设部. 空间网格结构技术规程:JGJ 7-2010[S]. 北京:中国建筑工业出版社,2010. [3] 李黎明, 牟在根, 徐彦峰, 等. 民航博物馆在考虑初始缺陷后稳定承载力研究[C]//第十四届全国现代结构工程学术研讨会论文集. 天津:2014. [4] 沈世钊, 支旭东. 球面网壳结构在强震下的失效机理[J]. 土木工程学报,2005(1):11-20. [5] 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018. [6] 中华人民共和国住房和城乡建设部. 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社,2010. [7] 童根树. 钢结构设计方法[M]. 北京:中国建筑工业出版社,2007. [8] 王国周,瞿覆谦. 钢结构原理与设计[M]. 北京:清华大学出版社,1998. [9] 马智刚, 李海峰. 大跨度门式刚架结构设计[J]. 钢结构, 2006,19(5):20-22.
点击查看大图
计量
- 文章访问数: 340
- HTML全文浏览量: 70
- PDF下载量: 54
- 被引次数: 0