Progress of Research on High-Strength Structural Steel Connections
-
摘要: 高强钢用于钢结构可节省用钢量,降低钢结构制作、运输和安装成本。由于高强钢力学性能与普通钢具有不可忽视的差异,近年来国内外学者开展了大量的高强结构钢应用研究工作。高强钢结构在工程中应用除需进行合理的构件设计外,还需为高强钢构件之间设计高效的连接以形成安全、可靠的结构。
对高强钢的两种重要连接方法(焊接和螺栓连接)的国内外研究进展情况进行了介绍,包括:高强钢对接焊缝连接承载性能研究、高强钢角焊缝连接承载性能研究、高强钢摩擦型螺栓连接承载性能研究、高强钢承压型螺栓连接承载性能研究及12.9级高强螺栓氢致延迟断裂研究等,并着重介绍了同济大学的有关研究进展,总结了现有研究进展,展望了今后的研究工作。Abstract: The application of high-strength steel in steel structures can reduce steel consumption and increase the cost efficiency of steel structures in terms of welding work, transportation and installation. Due to the different mechanical properties between high-strength steel and normal-strength steel, domestic and foreign researchers have carried out a number of studies to support the application of high-strength steel in structures. In addition to the design of high-strength steel members, the efficient design of connections between high-strength steel members are also necessary for the successful application of the high-strength steel structure in engineering practice. This paper introduces the research progress of the two important connection methods, welded and bolted connections, of high-strength steel structures, including the research progress on load-bearing performance of high-strength steel butt welded joints and fillet welded joints, the bearing performance of slip-critical bolted connections and bearing-type bolted connections, as well as the resistance of Grade 12.9 high-strength bolts to hydrogen-induced delayed fracture (HIDF). The existing research conclusions and recent research progress in Tongji University are summarized and highlighted, and the prospection of future research work is presented. -
李国强, 王彦博, 陈素文, 等. 高强度结构钢研究现状及其在抗震设防区应用问题[J]. 建筑结构学报, 2013, 34(1):1-13. Sun F F, Ran M M, Li G Q, et al. Experimental and numerical study of high-strength steel butt weld with softened HAZ[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 2018, 171(8):583-597. CEN. Eurocode 3:Design of steel structures-part 1-12:additional rules for the extension of EN 1993 up to steel grades S700:EN 1993-1-12[S]. Brussels:European Committee for Standardization, 2005. ANSI. Structural welding code-steel:AWS D1.1/D1.1M:2015[S]. Miami:American National Standards Institute, 2015. Wang Y B, Wang Y Z, Chen K, et al. Slip factors of high strength steels with shot blasted surface[J]. Journal of Constructional Steel Research, 2019, 157:10-18. Wang Y B, Lyu Y F, Li G Q, et al. Behavior of single bolt bearing on high strength steel plate[J]. Journal of Constructional Steel Research, 2017, 137:19-30. 唐家豪. 12.9级高强螺栓氢致延迟断裂性能研究[D]. 上海:同济大学, 2019. 中华人民共和国住房和城乡建设部. 钢结构设计标准:GB 50017-2017[S]. 北京:中国建筑工业出版社,2018. Satoh K, Toyoda M, Ukita K, et al. Prevention of weld crack in HT80 heavy plates with undermatching electrodes and its application to fabricating penstock[J]. Transactions of the Japan Welding Society, 1978, 9(1):17-21. Howden D G. Effective use of weld metal yield strength for HYSteels[M/OL]. Washington, D. C.:National Academy Press, 1983. https://www.nap.edu/read/19462/chapter/1#iv. Barsoum Z, Khurshid M. Ultimate strength capacity of welded joints in high strength steels[J]. Procedia Structural Integrity, 2017(5):1401-1408. Khurshid M, Barsoum Z, Barsoum I. Load carrying capacities of butt welded joints in high strength steels[J]. Journal of Engineering Materials and Technology, 2015, 137(4). Doi: 10.1115/1.4030687. Valkonen I. Ultimate limit load in welded joints and in net sections of high strength steels with yield stress 960 MPa[J]. Procedia Materials Science, 2014(3):720-725. Tornblom S. Undermatching butt welds in high strength steel[D]. Lulea:Lulea University of Technology, 2007. Loureiro A J. Effect of heat input on plastic deformation of undermatched welds[J]. Journal of Materials Processing Technology, 2002, 128(1):240-249. Björk T, Ahola A, Tuominen N. On the design of fillet welds made of ultra-high-strength steel[J]. Welding in the World, 2018, 62(5):985-995. Björk T, Toivonen J, Nykänen T. Capacity of fillet welded joints made of ultra high-strength steel[J]. Welding in the World, 2012, 56(3/4):71-84. Ran M M, Sun F F, Li G Q, et al. Experimental study on the behavior of mismatched butt welded joints of high strength steel[J]. Journal of Constructional Steel Research, 2019, 153:196-208. Guo H, Wan J, Liu Y, et al. Experimental study on fatigue performance of high strength steel welded joints[J]. Thin-Walled Structures, 2018, 131:45-54. Lundin C D, Gill T, Qiao C Y. Heat affected zones in low carbon microalloyed steels[J]. ASM International, 1990:249-256. Denys R. The effect of HAZ softening on the fracture characteristics to modern steel weldments and the practical integrity of marine structures made by TMCP steels[C]//Proc. EVALMAT 89. Kobe:1998:1013-1027. Akselsen O M, Rorvik G, Onsoien M I, et al. Assessment and predictions of HAZ tensile properties of high-strength steels[J]. Weld. J., 1989, 68(9):356-362. Hochhauser F, Ernst W, Rauch R, et al. Influence of the soft zone on the strength of welded modern HSLA steels[J]. Welding in the World, 2012, 56(5/6):77-85. Costa J D M, Ferreira J A M, Abreu L P M. Fatigue behaviour of butt welded joints in a high strength steel[J]. Procedia Engineering, 2010, 2(1):697-705. Gharibshahiyan E, Raouf A H, Parvin N, et al. The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding[J]. Materials & Design, 2011, 32(4):2042-2048. Maurer W, Ernst W, Rauch R, et al. Electron beam welding of a TMCP steel with 700 MPa yield strength[J]. Welding in the World, 2012, 56(9):85-94. 杨喜胜, 杨滨, 彭云, 等. 低合金调质高强钢焊接软化行为研究[J]. 热加工工艺, 2013, 42(17):32-36. Ramazani A, Mukherjee K, Abdurakhmanov A, et al. Micro-macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel[J]. Materials Science and Engineering:A, 2014, 589:1-14. Ahiale G K, Oh Y. Microstructure and fatigue performance of buttwelded joints in advanced high-strength steels[J]. Materials Science and Engineering:A, 2014, 597:342-348. Gong H, Wang S, Knysh P, et al. Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels[J]. Materials & Design, 2016, 90:1115-1123. Amraei M, Skriko T, Bjork T, et al. Plastic strain characteristics of butt-welded ultra-high strength steel (UHSS)[J]. Thin-Walled Structures, 2016, 109:227-241. Liu X, Chung K, Ho H, et al. Mechanical behavior of high strength S690-QT steel welded sections with various heat input energy[J]. Engineering Structures, 2018, 175:245-256. Sun F F, Ran M M, Li G Q, et al. Strength model for mismatched butt welded joints of high strength steel[J]. Journal of Constructional Steel Research, 2018, 150:514-527. Maurer W, Ernst W, Rauch R, et al. Evaluation of the factors influencing the strength of HSLA steel weld joint with softened HAZ[J]. Welding in the World, 2015, 59(6):809-822. Ragu Nathan S, Balasubramanian V, Malarvizhi S, et al. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints[J]. Defence Technology, 2015, 11(3):308-317. Mochizuki M, Shintomi T, Hashimoto Y, et al. Analytical study on deformation and strength in HAZ-softened welded joints of finegrained steels[J]. Welding in the World, 2004, 48(9):2-12. Kitano H, Okano S, Mochizuki M, et al. Evaluation of the effect of strength mismatch in undermatched joints on the static tensile strength of welded joints by considering microstructure:mechanical discussion on 950 MPa class steel plate welded joint[J]. Welding International, 2014, 28(10):766-774. Satoh K, Toyoda M. Static strength of welded plates including soft interlayer under tension across a weld line[J]. Transactions of the Japan Welding Society, 1970, 1(2):10-17. Shehata F. Effect of plate thickness on mechanical properties of steel arc welded joints[J]. Materials & Design, 1994, 15(2):105-110. Komizo Y. Performance of welded joints in TMCP steel plates[J]. Welding International, 1991, 5(8):598-601. De Meester B. The weldability of modern structural TMCP steels[J]. ISIJ International, 1997, 37(6):537-551. 赵逍. 超500 MPa级高强钢对接焊缝连接承载性能与设计方法研究[D]. 上海:同济大学, 2020. Rasche C, Kuhlmann U. Investigations on Longitudinal Fillet Welded Lap Joints of HSS[C]//Proceedings of Nordic Steel Construction Conference(NSCC2009). Malmö, Sweden:2009:462-469. Günther H, Hildebrand J, Rasche C, et al. Welded connections of high-strength steels for the building industry[J]. Welding in the World, 2012, 56(5):86-106. Rasche C, Kuhlmann U. The load bearing capacity of fillet welded connections of high strength steels[J]. Iabse Symposium Report,2010, 81(34):71-78. Kuhlmann U, GüNther H, Rasche C. High-strength steel fillet welded connections[J]. Steel Construction, 2008, 1(1):77-84. BjöRk T, Penttilä T, NykäNen T. Rotation capacity of fillet weld joints made of high-strength steel[J]. Welding in the World, 2014, 58(6):853-863. CEN. Eurocode 3:Design of steel structures-part 1-8:design of joints:EN 1993-1-8[S]. Brussels:European Committee for Standardization, 2005. Lu H, Dong P, Boppudi S. Strength analysis of fillet welds under longitudinal and transverse shear conditions[J]. Marine Structures, 2015, 43:87-106. 施刚, 陈玉峰. 高强度钢材焊缝连接试验研究[J]. 工业建筑, 2016, 46(7):47-51. Sun F F, Ran M M, Li G Q, et al. Mechanical behavior of transverse fillet welded joints of high strength steel using digital image correlation techniques[J]. Journal of Constructional Steel Research, 2019. Doi: 10.1016/j.jcsr.2019.105710. Ran M M, Sun F F, Li G Q, et al. Mechanical behavior of longitudinal lap-welded joints of high strength steel:experimental and numerical analysis[J]. Engineering Structures, 2020. 冉明明. 高强钢焊缝连接的力学性能和设计理论研究[D]. 上海:同济大学, 2019. Kulak G L, Fisher J W. A5l4 steel joints fastened by A490 bolts[R]. Bethlehem, Pennsylvania:Friz Engineering Laboratory, Department of Civil Engineering, Lehigh University, 1967. Kulak G L, Fisher J W, Struik J H. Guide to design criteria for bolted and rivet joints[M]. 2nd Ed. New York:John Wiley & Sons, 1987. Cruz A, Simões R, Alves R. Slip factor in slip resistant joints with high strength steel[J]. Journal of Constructional Steel Research, 2012,70:280-288. 李友志, 季小莲,吴耀华. 高强度结构钢高强度螺栓摩擦型连接节点试验研究[J]. 建筑结构, 2015(21):21-24. 陈坤. 超500 MPa级高强钢常见摩擦面抗滑移系数试验研究[D]. 上海:同济大学, 2017. Wang Y B, Wang Y Z, Chen K, et al. Slip factor between shot blasted mild steel and high strength steel surfaces[J]. Journal of Constructional Steel Research, 2020. Doi: org/10.1016/j.jcsr.2020.105969. Wang Y B, Lyu Y F, Wang Y Z, et al. Study on the slip and bearing behavior of bolted connection with high strength steel members[C]//International Conference on Engineering Research and Practice for Steel Construction. Hong Kong:2018:5-7. Wang Y B, Wang Y Z, Chen K, et al. Slip factor of high strength steel with inorganic zinc-rich coating[J]. Thin-Walled Structures, 2020. Doi: 10.1016/j.tws.2019.106595. Kim H J, Yura J A. The effect of ultimate-to-yield ratio on the bearing strength of bolted connections[J]. Journal of Constructional Steel Research, 1999, 49:255-269. Aalberg A, Larsen P K. Bearing strength of bolted connections in high strength steel[C]//Nordic Steel Construction Conference. Helsinki:2001:859-866. Aalberg A, Larsen P K. The effect of steel strength and ductility on bearing failure of bolted connections[C]//Proceedings of the 3rd European Conference on Steel Structures. Universidad de Coimbra, 2002:869-878. Rex C Q, Easterling W S. Behavior and modeling of a bolt bearing on a single plate[J]. Journal of Structural Engineering, 2003, 129(6):792-800. Može P, Beg D. High strength steel tension splices with one or two bolts[J]. Journal of Constructional Steel Research, 2010, 66(8/9):1000-1010. Može P, Beg D. A complete study of bearing stress in single bolt connections[J]. Journal of Constructional Steel Research, 2014, 95:126-140. Može P. Bearing strength at bolt holes in connections with large end distance and bolt pitch[J]. Journal of Constructional Steel Research, 2018,147:132-144. Teh L H,Uz M E. Effect of loading direction on the bearing capacity of cold-reduced steel sheets[J]. Journal of Structural Engineering, 2014, 140(12). Doi: 10.1061/(ASCE)ST.1943-541X.0001107. Teh L H,Uz M E. Ultimate tilt-bearing capacity of bolted connections in cold-reduced steel sheets[J]. Journal of Structural Engineering, 2017, 143(4). Doi: 10.1061/(ASCE)ST.1943-541X.0001702. 季小莲, 吴耀华, 何文汇. 承压型高强度螺栓连接Q160低屈服点钢板的承压强度试验研究[C]//2015中国钢结构行业大会论文集. 济南:2015. 吴耀华, 张志远, 纪洪广. 高强度螺栓连接中钢板孔壁承压强度试验研究[J]. 钢结构, 2015,30(12):28-31. Lyu Y F, Wang Y B, Li G Q, et al. Numerical analysis on the ultimate bearing resistance of single-bolt connection with high strength steels[J]. Journal of Constructional Steel Research, 2019, 153:118-129. 吕一凡,李国强,王彦博. 超500 MPa级高强钢承压型螺栓连接承载力试验研究[J]. 工程力学,2019,36(5):200-207,215. Lyu Y F, Li G Q, Wang Y B. Behavior-based resistance model for bearing-type connection in high strength steels[J]. Journal of Structural Engineering, 2020. Doi: 10.1061/(ASCE)ST.1943-541X.0002639. AISC. Specifications for structural steel buildings:ANSI/AISC 360-16[S]. Chicago:American Institute of Steel Construction, Inc, 2016. Puthli R, Fleischer O. Investigations on bolted connections for high strength steel members[J]. Journal of Constructional Steel Research, 2011, 57:313-326. 潘斌, 石永久, 王元清. Q460等级高强度钢材螺栓抗剪连接孔壁承压性能有限元分析[J]. 建筑科学与工程学报, 2012(2):48-54. 郭宏超, 皇垚华, 刘云贺, 等. Q460高强钢螺栓连接承载性能试验研究[J]. 土木工程学报, 2018(3):81-89. 郭宏超,肖枫,李炎隆, 等. Q690高强钢螺栓抗剪连接承载性能试验研究[J]. 实验力学,2018,33(4):583-591. Wang Y B, Lyu Y F, Li G Q, et al. Bearing-strength of high strength steel plates in two-bolt connections[J]. Journal of Constructional Steel Research, 2019, 155:205-218. Može P, Beg D. Investigation of high strength steel connections with several bolts in double shear[J]. Journal of Constructional Steel Research, 2011,67(3):333-347. 杨昌, 张雷, 杨凤, 等. 螺栓群剪力分配与螺栓布置关系的研究[J]. 南昌大学学报(工科版), 2016,38(3):267-271. Lyu Y F, Li G Q, Wang Y B, et al. Bearing behavior of multi-bolt high strength steel connections[J]. Engineering Structures, 2020. Doi: 10.1016/j.engstruct.2020.110510. Beghini M, Benamati G, Bertini L. Hydrogen embrittlement characterization by disk pressure tests:test analysis and application to high chromium martensitic steels[J]. Journal of Engineering Materials & Technology, 1996, 118(2):179-185. Liou H Y, Shieh R I, Wei F I, et al. Roles of microalloying elements in hydrogen induced cracking resistant property of HSLA steels[J]. Corrosion, 1993, 49(5):389-398. Beachem C D. A new model for hydrogen-assisted cracking (hydrogen "embrittlement")[J]. Metall Trans, 1972, 3(2):437-451. Chun Y S, Lee J L, Bae C M, et al. Caliber-rolled TWIP steel for high-strength wire rods with enhanced hydrogen-delayed fracture resistance[J]. Scripta Materialia, 2012, 67(7/8):681-684. 惠卫军,董瀚,翁宇庆. 耐延迟断裂高强度螺栓钢研究开发[J]. 钢铁学报,2001,36(3):69-73. 惠卫军,董瀚,王毛球,等. 1300 MPa级高强度螺栓钢[J]. 钢铁学报,2002,37(3):37-42. 卢海波,蔡珣,熊云奇,等. 14.9级螺栓研制及在汽车发动机上的应用[J]. 上海交通大学学报,2005,39(7):1105-1108. 孙永伟,范芳雄. 14Cr17Ni2钢制螺栓断裂原因分析[J]. 金属热处理学报,2018,43(10):247-252.
点击查看大图
计量
- 文章访问数: 728
- HTML全文浏览量: 141
- PDF下载量: 64
- 被引次数: 0