Progress in Numerical Simulation Study of Wind-Induced Response of Transmission Towers
-
摘要: 输电塔是输电线路中重要的承重设施,其结构安全性直接关系到国家电网和输电线路的正常运行。目前针对输电塔风致响应主要通过现场实测、风洞试验和数值模拟等方法进行研究。随着计算机技术和数值方法的发展,对输电塔风致响应特征进行数值模拟分析开始被广泛应用并取得了大量研究成果。相关的数值模拟研究先通过建立对应的风荷载模型和结构模型,然后以有限元方法分析结构动力响应特征和研究对应的风振控制方法,因此从风荷载模型、结构模型、动力响应特征和风振控制研究等方面总结输电塔风致响应数值模拟研究进展。
近地面风场的平均风和脉动风模型是构建结构风荷载的基础。针对平均风主要采用指数型和对数型风速剖面模型,而脉动风则主要根据相关的脉动风谱进行模拟。在不同极端气象条件下,风场表现出不同于良态风的风场特征,对应的平均风和脉动风模型需要进一步根据实际情况研究。构建输电塔风荷载还需要结合相关的结构参数,其中塔体结构整体挡风效应以及塔体构件之间的遮挡效应可通过流场模拟进行分析研究。
对输电塔塔体结构建立有限元模型时,通常可将之视为刚架结构和桁梁混合结构,而利用桁架结构进行模拟的误差较大。输电塔所承受的荷载除了风荷载等外部环境荷载外,还应考虑输电线对塔体结构作用带来的影响,因此需建立塔线耦合体系对实际输电线路中塔体结构特征进行模拟。在构建塔线体系有限元模型过程中,可结合悬链线理论和导线水平张力对导线进行建模和找形。
基于风荷载模型和结构模型可进行塔体风致响应分析,结构动力特征会对风致响应产生重要的影响,其中导线对塔体的作用使得整体体系的结构动力特征更加复杂。对于不同来流风向条件下输电塔的风荷载,我国相关规范有对应的计算系数和分配系数,而在塔线耦合体系中,风向对塔体结构风致响应的影响更显著。
根据是否需要外界能量输入,结构风振控制分为主动控制、被动控制和混合控制。迄今为止,被动控制特别是调谐质量阻尼器仍然是对输电塔风振控制的主要方法,其中阻尼器的自振频率应与塔体自振频率保持一致,风振控制效果才能达到最佳,但是塔线耦合作用使得风振控制的优化更为复杂。
此外,还对未来可能的研究方向进行了展望,进一步研究特殊天气风场特征、开发更可靠的有限元建模方法、深入研究塔体扭转向及沿线向响应特征、优化TMD设计参数和布置方案等都应是未来重要的研究方向。Abstract: Transmission tower is an important load-bearing facility of transmission line, and its safety is directly related to the normal operation of the national grid and transmission line. Wind-induced response of transmission towers is mainly studied by field measurement, wind tunnel test and numerical simulation. With the development of computer technology and numerical methods, numerical simulation analysis on wind-induced response of transmission towers begins to be widely adopted and significant achievements were gained. Wind load model and structure model are established, then the structure dynamic response characteristics and the corresponding wind vibration control method are studied in related numerical simulation research, so progress of wind-induced response numerical simulation research of transmission tower is summarized from wind load model, structure model and dynamic response characteristics and wind vibration control research in this article.
The mean wind and fluctuating wind model of wind field in the ground layer is the basis of building structure wind load. The wind speed profile model used for the mean wind mainly includes exponential and logarithmic wind speed profile model, while the fluctuating wind is mainly simulated according to turbulent wind power spectrum. Under different extreme weather conditions, wind field shows different characteristics from normal wind. The corresponding mean and fluctuating wind models need to be further studied according to the actual situation. The wind load of transmission tower also needs relevant structural parameters, in which the wind resistance effect of tower structure and the shielding effect between tower components can be studied by flow field simulation.
When building the transmission tower finite element model, the transmission tower can be regarded as the rigid frame structure and the truss-beam structure, while the error of simulation by using the truss model is large. In addition to wind load and other external environmental loads, the influence of transmission line on tower structure should also be considered, so the tower-line coupling system should be established to simulate the actual structure characteristics of transmission tower. In the process of building the finite element model of tower-line system, the catenary theory and the horizontal tension of conductor can be used to model and shape the conductor.
Based on the wind load model and the structural model, the wind-induced response of transmission tower can be analyzed. The dynamic characteristics of the structure have important effects on the wind-induced response, and the effect of the conductor on the tower makes dynamic characteristics of tower-line system more complex. For the wind load of tower under different wind direction, the relevant codes have corresponding calculation coefficient and distribution coefficient. For the tower-line coupling system, the wind direction has more significant effects on the wind-induced response.
According to whether external energy input is needed, wind-induced vibration control can be divided into active control, passive control and hybrid control. So far passive control, especially tuned mass damper, is still the main method for wind-induced vibration control of transmission tower. The natural frequency of damper should be consistent with the natural frequency of tower, then the wind-induced vibration control works best. However, the optimization of wind-induced vibration control is more complicated due to tower-line coupling effect.
Besides, future research direction was prospected. Further research on wind field characteristics of special weather, development of more reliable finite element modeling methods, further study of tower torsional and along-line response characteristics, and optimization of TMD design parameters and layout should be important research directions in the future. -
侯亿晖. 输电塔风振响应分析及结构内力计算[D]. 成都:西南交通大学, 2016. 《中国电力教育》杂志社. 国内外自然灾害造成的电力系统事故[J]. 中国电力教育, 2008(6):12-14. 朱晓颖. 图:江苏巨风导致镇江输电塔倒伏受损[EB/OL].[2009-06-15]. http://www.chinanews.com/tp/news/2009/06-15/1734388.shtml. 那鹏翔. 黑龙江省肇东两输电铁塔折倒造成火车停运3小时(图)[EB/OL].[2014-05-29]. https://heilongjiang.dbw.cn/system/2014/05/29/055755742.shtml. 王东. 角钢输电塔风荷载作用模式研究[D]. 杭州:浙江大学, 2013. 白海峰. 输电塔线体系环境荷载致振响应研究[D]. 大连:大连理工大学, 2007. 王骞. 风荷载下大跨越输电塔-线体系振动控制分析[D]. 济南:山东大学, 2014. 屈讼昭. 国内外输电塔风荷载技术标准比较分析[J]. 电力建设, 2013, 34(5):22-29. 贺博, 修娅萍, 赵恒,等. 强台风下高压输电线路塔-线耦联体系的力学行为仿真分析二:动力响应分析[J]. 高压电器, 2016, 52(4):42-47. 贺博, 修娅萍, 赵恒,等. 强台风下高压输电线路塔-线耦联体系的力学行为仿真分析三:动静力响应对比[J]. 高压电器, 2016, 52(4):48-53. 潭彪. 风谱对输电塔响应影响及气动阻尼研究[D]. 重庆:重庆大学, 2016. 白海峰, 刘兴. 顺风作用下输电塔疲劳可靠度分析[J]. 空间结构, 2017, 23(1):80-86. 楼文娟, 段志勇, 金晓华,等. 风速水平空间相关性对长横担输电塔风效应的影响[J]. 振动与冲击, 2014, 33(13):63-66. 杨文刚, 王璋奇, 朱伯文,等. 特高压单柱拉线塔塔线体系风致响应时程分析[J]. 中国电机工程学报, 2015, 35(12):3182-3191. Dua A, Clobes M, Höbbel T. Dynamic analysis of overhead transmission line under turbulent wind loading[J]. Electronic Journal of Structural Engineering, 2015, 15(1):46-54. 党会学, 赵均海, 张宏杰,等. 三角形格构式塔身体型系数及屏蔽特性研究[J]. 计算力学学报, 2016, 33(3):362-368. 谢华平, 何敏娟, 马人乐. 基于CFD模拟的格构塔平均风荷载分析[J].中南大学学报(自然科学版),2010, 41(5):1980-1986. Jonas A, Jan M, Giacomo A, et al. Porous and geometry-resolved CFD modelling of a lattice transmission tower validated by drag force and flow field measurements[J]. Engineering Structures, 2018, 168:462-472. 胡尚瑜, 宋丽莉, 李秋胜. 近地边界层台风观测及湍流特征参数分析[J]. 建筑结构学报, 2011, 32(4):1-8. 张传雄. 台风作用下高层建筑的风场和风效应原型实测研究[D]. 长沙:湖南大学, 2018. 徐旭, 刘玉. 高耸结构在台风作用下的动力响应分析[J]. 建筑结构, 2009, 39(6):105-109. 张志强, 安利强, 庞松岭,等. 基于塔线体系模型的沿海输电铁塔抗风性能研究[J]. 电力科学与工程, 2016, 32(11):74-78. An L Q, Wu J, Zhang Z Q, et al. Failure analysis of a lattice transmission tower collapse due to the super typhoon Rammasun in July 2014 in Hainan Province, China[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182:295-307. 安利强,张志强,黄仁谋,等. 台风作用下输电塔线体系动力响应分析[J]. 振动与冲击, 2017, 36(23):255-262. El Damatty A A, Hamada A. F2 tornado velocity profiles critical for transmission line structures[J]. Engineering Structures, 2016, 106:436-449. Yang F, Zhang H. Two case studies on structural analysis of transmission towers under downburst[J]. Wind and Structures, 2016, 22(6):685-701. 杨风利, 张宏杰, 杨靖波,等. 下击暴流作用下输电铁塔荷载取值及承载性能分析[J]. 中国电机工程学报,2014, 34(24):4179-4186. Tian L, Zeng Y J, Fu X. Velocity ratio of wind-driven rain and its application on a transmission tower subjected to wind and rain loads[J]. Journal of Performance of Constructed Facilities, 2018, 32(5):1-10. Fu X, Li H N, Li G. Fragility analysis and estimation of collapse status for transmission tower subjected to wind and rain loads[J]. Structural Safety, 2016, 58:1-10. Fu X, Li H N, Yang Y B. Calculation of rain load based on single raindrop impinging experiment and applications[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 147:85-94. Fu X, Li H N, Yi T H. Research on motion of wind-driven rain and rain load acting on transmission tower[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 139:27-36. 尹飞鸿. 有限元法基本原理及应用[M]. 北京:高等教育出版社, 2010:1-2. 康渭铧. 输电线路铁塔参数化建模技术研究[D]. 宜昌:三峡大学, 2012. 陈建稳, 袁广林, 刘涛, 等. 数值模型对输电铁塔内力和变形的影响分析[J]. 山东科技大学学报(自然科学版), 2009, 28(1):40-45. 钱程,沈国辉,郭勇,等. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6):1082-1089. 卢哲刚, 姚谏. 向量式有限元:一种新型的数值方法[J]. 空间结构, 2012, 18(1):85-91. 姚旦, 沈国辉, 潘峰, 等. 基于向量式有限元的输电塔风致动力响应研究[J]. 工程力学, 2015, 32(11):63-70. Liang S, Zou L, Wang D, et al. Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system[J]. Engineering Structures, 2015, 85:63-72. Deng H Z, Xu H J, Duan C Y, et al. Experimental and numerical study on the responses of a transmission tower to skew incident winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157:171-188. 熊希. 基于导线张力信息的架空输电导线舞动分析方法研究[D]. 北京:华北电力大学, 2015. 张旺海, 于建斌. 基于ANSYS的架空输电导线找形研究[J]. 电力建设, 2012, 33(2):32-35. 王新敏. ANSYS工程结构数值分析[M]. 北京:人民交通出版社, 2007:467-471. 岳培根. 高压输电塔线体系的风致动力响应分析[D]. 郑州:郑州大学, 2014. 李天昊. 输电导线气动力特性及风偏计算研究[D]. 杭州:浙江大学, 2016. 孔贝贝, 张都清, 白雪, 等. 输电塔及其塔线耦合体系的模态分析研究[J]. 现代制造技术与装备, 2013(1):3-4, 13. 郝淑英, 马丽君, 王磊, 等. 输电塔线体系模态分析[J]. 天津理工大学学报, 2014, 30(5):9-12. 孟遂民, 卢银均, 祝一帆, 等. 输电铁塔及塔线耦合体系动态特性研究[J]. 三峡大学学报(自然科学版), 2016, 38(3):69-72. Tian L, Pan H Y, Qiu C X, et al. Wind-induced collapse analysis of long-span transmission tower-line system considering the member buckling effect[J]. Advances in Structural Engineering, 2018, 22(1):30-41. He B, Zhao M, Feng W, et al. A method for analyzing stability of tower-line system under strong winds[J]. Advances in Engineering Software, 2019, 127:1-7. 金新阳, 陈凯, 唐意, 等. 建筑风工程研究与应用的新进展[J]. 建筑结构, 2011, 41(11):111-117. 张庆华, 顾明. 基于高频天平测力实验的500 kV单回路输电塔风致响应研究[J]. 振动与冲击, 2014, 33(4):156-160. 张庆华, 马文勇. 多回路高压输电塔典型横担结构风力系数风洞试验研究[J]. 振动与冲击, 2016, 35(16):158-163. 张俊卫. 超高层建筑的风致横风向响应分析和TMD控制[D]. 大连:大连理工大学, 2014. Den Hartog J P. Mechanical vibrations[M]. New York:McGraw-Hill, 1956:215-220. 柳国环, 李宏男. 高压输电塔-线体系风致动力响应分析与优化控制[J]. 中国电机工程学报, 2008, 28(19):131-137. 陶天友. 大跨度三塔连跨悬索桥风致抖振及其MTMD控制研究[D]. 南京:东南大学,2015. 高翔, 朱峰, 刘宁, 等. 输电塔-线体系风雨致振控制研究[J]. 工业建筑, 2016, 46(1):173-178. 梁龙腾. 基于TMD的高压输电杆塔风振控制研究[D]. 长沙:长沙理工大学, 2016. Tian L, Gai X. Wind-induced vibration control of power transmission tower using pounding tuned mass damper[J]. Journal of Vibroengineering, 2015, 17(7):3693-3701. 马涌泉, 邱洪兴. 输电塔-线体系风致响应的鲁棒半主动控制[J]. 东北大学学报(自然科学版), 2016, 37(2):279-284. 高铭尚. 风荷载作用下输电塔结构MATLAB、ANSYS联合主动控制数值模拟研究[D]. 西安:西安建筑科技大学, 2016.
点击查看大图
计量
- 文章访问数: 658
- HTML全文浏览量: 88
- PDF下载量: 34
- 被引次数: 0