Research on Mechanical Properties of Truss String Structure with Spring Rods
-
摘要: 普通张弦桁架结构由于其具有受力合理、自重轻、施工便捷等优点,已被广泛应用于许多实际工程中并取得了良好的经济效益,但由于该结构体系自重较轻,在强风地区遭受风揭破坏的现象也时有发生。为避免此类现象的出现,减少经济财产损失,充分发挥张弦桁架结构自身的特性,提高其安全性和适用性,设计了一种适用于张弦桁架结构体系的弹簧杆装置,利用该装置可实现结构体系抵抗强风和承受常规荷载,满足张弦桁架结构在强风地区的使用要求。
为深入研究该装置对结构性能提升的影响程度,进一步探索弹簧杆对结构受力特性的影响规律,以某跨度为150 m、高度为45 m、长度为160 m的张弦桁架结构为研究对象,利用商业有限元软件MIDAS/Gen,分析了弹簧杆装置的刚度、布置位置及布置角度等参数对结构受力性能的影响。首先介绍弹簧杆装置设计概念及构造,详细阐述其组成部分及工作原理,并说明在有限元软件中模拟该装置的方法。随后分别取弹簧刚度为20,50,100,300 kN/mm,并将各个刚度的弹簧杆依次布设在张弦桁架的第一道、第二道和第三道次桁架下,计算在特定荷载组合下结构的最大位移、最大应力和最大索力。最后设置弹簧杆与地面的夹角分别为30°、45°、60°和90°,计算在风荷载控制荷载组合下结构的最大位移,并且分析了弹簧杆布置对结构动力性能的影响。
研究结果表明:1)在“1.3恒+1.5活”荷载组合下,弹簧杆装置刚度为100 kN/mm且布置在第二道次桁架下时,结构的最大位移、最大应力和最大索力比相应普通张弦桁架结构的分别下降了60.12%、34.68%和32.13%,说明该装置对结构抵抗恒、活荷载的作用明显,并且很大程度地降低了结构的应力和索力的大小,可以减小结构体系的负担;但当弹簧刚度大于50 kN/mm时,该装置对结构性能的提升作用不再明显。2)在“1.3恒+1.05活+1.5风”荷载组合下,弹簧杆装置与地面的夹角为30°时,结构的最大位移降低了54.77%,表明弹簧杆可有效降低风荷载对结构的影响。3)从结构的自振频率来看,除第一周期外,布设该装置的张弦桁架结构均比普通张弦桁架结构的自振周期小,可见该装置能增大结构的刚度。Abstract: Ordinary truss string structures have been widely used in many practical projects and achieved good economic benefits because of its advantages known as reasonable distribution of stresses, light weight and convenient construction. However, the wind uplift damage often occurs in strong wind areas due to the light self-weight of the structure. To avoid this kind of phenomenon, reduce the loss of economic property, give full play to the characteristics of truss string structure, and improve its safety and applicability, a spring rod device suitable for truss string structure system is designed. The device can realize the use of resisting strong wind and bearing normal load, and meet the requirements of truss string structure in strong wind area.
In order to deeply study the influence of the device on the structural performance improvement and further explore the influence law of the spring bar on the mechanical characteristics of structure, a truss string structure with a span of 150 m, a height of 45 m and a length of 160 m was taken as the research object, the influence of stiffness, arrangement position and arrangement angle of the spring rod device on the mechanical performance of the structure was analyzed by using commercial finite element software MIDAS/Gen. Firstly, the design concept and structure of spring rod device were introduced, its components and working principle were described in detail, and the method of simulating the device in finite element software was also described. Then, the spring stiffness of 20,50, 100, 300 kN/mm were taken respectively, and the spring bars with each stiffness were arranged under the first, second and third secondary truss of the string truss in turn, and the maximum displacement, maximum stress and maximum cable force of the structure under the specific load combination were calculated. Finally, the angle between the spring rod and the ground was set as 30°, 45°, 60° and 90° respectively, the maximum displacement of the structure under the load combination controlled by wind load was calculated, and the influence of the spring rod arrangement on the dynamic performance of the structure was analyzed.
The results show that:1) Under the "1. 3 dead+1. 5 live" load combination, the spring bar device stiffness is 100 kN/mm and is arranged under the second truss, the maximum displacement, maximum stress and maximum cable force of the structure decrease by 60. 12%, 34. 68% and 32. 13%, respectively, indicating that the device has obvious effect on the structure against the dead load and live load. The stress and cable force of the structure are greatly reduced, and the burden of the structure system can be reduced; but when the spring stiffness is greater than 50 kN/mm, the device has no obvious effect on the structural performance. 2) Under the load combination of "1. 3dead + 1. 05live + 1. 5wind", the maximum displacement of the structure is reduced by 54. 77% when the angle between the spring rod device and the ground is 30°, which indicates that the spring rod can effectively reduce the impact of wind load on the structure. 3) From the view of the natural frequency of the structure, except for the first period, the vibration period of the truss structure with spring rods is smaller than that of the ordinary one, so the device can increase the stiffness of the structure.-
Key words:
- truss string /
- spring rod device /
- mechanical performance /
- optimum stress state
-
[1] Xue W C, Liu S. Design optimization and experimental study on beam string structure[J]. Journal of Constructional Steel Research,2019,3(1):87-93. [2] 王果. 双张弦梁结构的结构性能分析和研究[D]. 合肥:合肥工业大学,2006. [3] 张毅刚. 张弦结构的十年(二):双向张弦结构和空间张弦结构的应用和发展[J]. 工业建筑,2009,39(11):93-99. [4] 余佳亮. 张弦桁架设计若干问题讨论[J]. 建筑结构,2013,43(15):68-72. [5] 王远,郭福元,冯辉,等. 大跨度张弦桁架钢屋盖结构施工技术[J]. 钢结构,2017,32(6):94-98. [6] 白正仙. 抗风索张弦拱桁架结构抗静风性能研究[C]//第十届全国现代结构工程学术研讨会论文集. 上海:2010:462-466. [7] 白正仙. 抗风索式张弦梁抗风有效性分析[C]//第十四届全国现代结构工程学术研讨会论文集. 天津:2014:369-374. [8] 郝亮亮,白正仙. 抗风索张弦梁的静力性能分析[J]. 钢结构, 2008,23(11):10-12. [9] 曹正罡,范峰. 大跨度预应力钢结构干煤棚[M]. 北京:中国建筑工业出版社,2019:31-33. [10] 吴捷. 影响双向张弦梁结构受力性能的参数分析[J]. 哈尔滨工业大学学报,2013,45(12):121-127. [11] 刘国光,武志玮,易莹. 采用荷载缓和体系的单向张弦梁结构静力性能研究[J]. 建筑结构,2014(4):78-81. [12] 朱思宇,梁存之,张建林. 某大跨度煤棚结构方案选型及计算[J]. 建筑钢结构进展,2018,20(5):70-75. [13] 丁虹,胡维奇,王卫东. 大跨度储煤棚结构设计要点[J]. 建筑技术开发,2019(9):4-5. [14] 陈楠,赵基达. 平面张弦结构的平面内整体稳定性研究[J]. 建筑科学,2018,34(7):70-75.
点击查看大图
计量
- 文章访问数: 372
- HTML全文浏览量: 109
- PDF下载量: 29
- 被引次数: 0