Investigation on Failure Mechanism of the Standing Seam Metal Roof System
-
摘要: 国内将直立锁边金属屋面系统引进后,对其传力原理和受力性能方面的研究尚未成熟,不利于此类屋面体系的推广应用。直立锁边金属屋面系统涉及的问题具有综合性、复杂性,需要大量科研工作予以解决。基于以上问题,针对性地对直立锁边金属屋面卷边咬合处展开相关研究。
首先介绍了金属屋面的构造,通过对铝镁锰直立锁边金属屋面系统构造的初步分析得到了屋面板抗风原理:最顶层的屋面板首先向上变形,将上升力通过锁边咬合构造传给支座,支座再将荷载由自攻螺钉传至檩条,最后再分配给主体结构。传力顺序为风吸荷载→屋面板→固定支座→自攻螺钉→檩条→主体结构。
利用非线性有限元软件MIDAS FEA模拟该屋面系统受风荷载作用下的破坏全过程,对直立锁边金属屋面系统的抗风性能进行研究。结合国内对金属屋面系统抗风揭破坏性能所做的研究,分别在屋面板平板及竖向板肋上施加满布均匀荷载2 kN/m2和5 kN/m2,分析不同荷载下屋面板的受力及变形情况,得到了不同位置节点处的Mises应力云图。分析发现:在2 kN/m2均布荷载作用下,支座与金属卷边相连接的部位由于相互的挤压和滑移,局部应力较大,达到220 MPa,但此时板面中部位置还停留在比较低的应力水平;在5 kN/m2的均布荷载作用下,屋面板跨中大部分以及支座附近的区域应力已经达到屈服强度;在2 kN/m2的均布荷载作用下,屋面板跨中位置的最大竖向挠度值约为48.18 mm,挠度数值较大,且支座处开口使得两侧板面挠度值大于中间板,需考虑其对整体屋面系统使用状态的影响;当施加在屋面板上的均布风荷载值为5.0 kN/m2时,板跨中挠度为220 mm,这是因为屋面板已经脱离支座,导致挠度迅速变大,此时过大的挠度对屋面板的正常使用产生了不可恢复的影响。通过对屋面板受荷载作用下的变形情况加以分析,可知相邻屋面板在风揭作用下,卷边直肋分别往两边运动,屋面板直立锁边部分与铝合金支座不断摩擦、挤压,随着变形的不断发展,最终脱离支座。因此,直立锁边金属屋面系统在风吸力作用下,屋面板卷边与支座处的咬合连接是最先发生破坏的部位,对此部位应特别注意,必要时应采取相应加强措施。
通过对结构的模态分析,得到其前5阶振型和周期。对屋面板进行风压动力时程分析,得到与各测点对应的锁缝连接处相对位移响应。为提高直立锁边金属屋面系统抗风揭能力,防止局部掀翻,针对不同的工程状况,提出了相应的加强对策。加强处理后,直立锁边金属屋面系统的使用安全性提高,可为工程设计提供参考。Abstract: After the introduction of the standing seam metal roof system in China, the research on the force transmission principle and the mechanical performance has not been mature, which is not conducive to the popularization and application of such roofing systems. The problems involved in the upright lock-edge metal roofing system are comprehensive and complex, and require a lot of scientific research to solve them. Based on the above problems, this article targeted the relevant research on the crimping joint of the upright edge-sealing metal roof.
First, the structure of the metal roof is introduced. The wind resistance principle of the roof slab is obtained through the preliminary analysis of the structure of the aluminum magnesium manganese upright metal roofing system:the top roof slab is first deformed upward, and the rising force is transmitted to the occlusion structure. The bearing, the bearing then transmits the load from the self-tapping screw to the purlin, and finally distributes it to the main structure. The order of force transmission is wind-absorbing load→roof panel→fixed support→self-tapping screw→purlin→main structure.
Using non-linear finite element software midas FEA to simulate the whole process of the roof system under the wind load, the wind resistance performance of the vertical locking metal roof system was studied. Combined with the domestic research on the metal roofing system's resistance to wind damage, a uniform load of 2 kN/m2 and 5 kN/m2 is applied to the roof slab and vertical ribs, and the stress and stress of the roof slab under different loads are analyzed In the deformation situation, the Mises stress cloud maps at different nodes are obtained. Under the uniform load of 2 kN/m2, the local connection between the support and the metal hemming due to mutual extrusion and slip, the local stress is large, reaching 220 MPa. But at this time, the middle of the slab still stays at a relatively low stress level; under the uniform load of 5 kN/m2, the stress in the middle of the roof slab and the area near the support has reached the yield strength. Under the uniform load of 2 kN/m2, the maximum vertical deflection value of the mid-span position of the roof slab is about 48.18 mm, the deflection value is relatively large, and the opening at the support makes the deflection value of the two sides of the panel surface greater than that of the middle panel Its impact on the overall roofing system usage status. When the value of the uniformly distributed wind load applied to the roof panel is 5 kN/m2, the mid-span deflection is 220 mm. This is because the roof panel has detached from the support, causing the deflection to rapidly increase. At this time, the excessive deflection to normal use of the panel has an unrecoverable impact. By analyzing the deformation of the roof slab under load, it can be seen that the adjacent roof slabs are moved to the two sides by the curling straight ribs under the wind exposure, and the vertical locking part of the roof slab continuously rubs against the aluminum alloy support extrusion, with the continuous development of deformation, eventually detached from the support. Therefore, under the action of the wind suction force, the bite connection between the curling edge of the roof slab and the support is the first part to be damaged, and special attention should be paid to the need to take corresponding strengthening measures.
Through the modal analysis of the structure, the first five orders of vibration mode and period are obtained. The time history analysis of the wind pressure on the roof slab was performed to obtain the relative displacement response of the lock joint corresponding to each measuring point. In order to improve the wind-resistance ability of the upright locking metal roofing system and prevent partial overturning, corresponding strengthening countermeasures are proposed according to different engineering conditions. After strengthening the treatment, the use safety of the upright lock-edge metal roofing system is improved, which can provide a reference for engineering design. -
刘军进,崔忠乾,李建辉.直立锁边金属屋面抗风揭性能研究现状及展望[J].建筑科学,2018,34(5):118-124. 李路川. 大跨度场馆上金属屋面系统抗风性能研究[D]. 天津:天津大学, 2014. 中华人民共和国建设部.铝合金结构设计规范:GB 50429-2007[S]. 北京:中国计划出版社,2007. 张玉龙,赵中魁.实用轻金属材料手册[M].北京:化学工业出版社,2006. Serrette R, Peköz T. Bending strength of standing seam roof panels[J]. Thin-Walled Structures,1997,27(1):55-64. Habte F, Asghari M M,Gan A C, et al. Full-scale testing to evaluate the performance of standing seam metal roofs under simulated wind loading[J]. Engineering Structures,2015,105:231-248. 陈玉. 直立锁边屋面系统抗风承载能力研究[D]. 北京:北京交通大学, 2015. 罗勇峰,郑祥杰,郭小农,等.铝合金屋面系统抗风连接受力性能分析[J].重庆大学学报,2013(10):94-100. 宋云浩,杨丽曼,王乾锁,等.金属屋面板风吸力下变形特性研究[J].建筑结构,2015,45(17):87-91. 景晓昆,李元齐.直立锁缝屋面体系固定支座的有效静力风荷载[J].同济大学学报(自然科学版),2013,41(11):1630-1635,1760. 陈辉.直立锁边金属屋面的抗风构造性能试验研究[J].钢结构,2018,33(8):20-23,78. 汪明波. 两类常用金属屋面板抗风性能研究[D]. 广州:华南理工大学, 2017.
点击查看大图
计量
- 文章访问数: 335
- HTML全文浏览量: 52
- PDF下载量: 33
- 被引次数: 0