2022年 第37卷 第1期
2022, 37(1): 1-8.
doi: 10.13206/j.gjgS21111001
摘要:
钢材低温脆断是钢结构工程面临的一大挑战,严重威胁低温环境下的结构安全。低温钢因其低温韧性较好,韧-脆转变温度较低,被广泛应用于各种液态气体储罐、管道及低温环境中的设备等。为全面了解低温钢的性能特点、冷脆机理和发展现状,介绍了低温钢的概念和国内外规范中相关规定,总结了低温韧-脆转变的经典理论,包括经典力学理论、晶格位错理论、能量理论和统计理论,并基于晶格位错理论详细阐述了低温下钢材性能变化的微观机理,分析了钢材韧-脆转变的主要影响因素以及低温下钢材的韧化机理及措施,明晰了当前低温钢研发的主要思路;此外,还介绍了当前低温钢的总体分类和产品系列。目前低温钢研发工作主要针对Ni系低温钢和高锰奥氏体低温钢,通过对比国内外标准中关于各类Ni系低温钢的化学成分含量及性能要求,介绍了我国低温钢的发展现状,并结合南极工程,对我国当前主要低温钢材用于建筑结构提出了设想,以进一步促进低温钢材料和结构应用的发展。
钢材低温脆断是钢结构工程面临的一大挑战,严重威胁低温环境下的结构安全。低温钢因其低温韧性较好,韧-脆转变温度较低,被广泛应用于各种液态气体储罐、管道及低温环境中的设备等。为全面了解低温钢的性能特点、冷脆机理和发展现状,介绍了低温钢的概念和国内外规范中相关规定,总结了低温韧-脆转变的经典理论,包括经典力学理论、晶格位错理论、能量理论和统计理论,并基于晶格位错理论详细阐述了低温下钢材性能变化的微观机理,分析了钢材韧-脆转变的主要影响因素以及低温下钢材的韧化机理及措施,明晰了当前低温钢研发的主要思路;此外,还介绍了当前低温钢的总体分类和产品系列。目前低温钢研发工作主要针对Ni系低温钢和高锰奥氏体低温钢,通过对比国内外标准中关于各类Ni系低温钢的化学成分含量及性能要求,介绍了我国低温钢的发展现状,并结合南极工程,对我国当前主要低温钢材用于建筑结构提出了设想,以进一步促进低温钢材料和结构应用的发展。
2022, 37(1): 9-20.
doi: 10.13206/j.gjgS21052002
摘要:
模块化建筑作为预制程度最高的一种建筑结构体系,以其装配化程度高、施工速度快、环境干扰少、模块质量可控且隔声、防火、保温性能优良、可拆卸重复利用、绿色环保等显著优势成为建筑工业化的研究热点。我国在模块化建筑的研究与应用方面取得了一定成果,但针对模块化结构的研究大多集中在模块化节点和构件上,缺乏多高层模块结构在风、地震等荷载工况下的整体性能研究。为此,将对采用板式内套筒节点的模块化装配式钢框架进行整体结构的设计与分析,研究地震作用下结构的抗震性能。
为便于整体结构建模分析,根据模块间连接节点构造形式和传力特点对节点简化方式进行了研究,提出了模块化板式内套筒节点简化计算模型并与相应的实体模型做对比以进行合理性验证;采用MIDAS/Gen 2020建立模块化钢框架整体结构计算模型,对结构进行反应谱分析,并将计算结果与现行国家标准限值进行对比;研究了地震作用下模块化钢框架的结构动力响应,采用弹性及弹塑性时程分析法对结构进行抗震性能分析,探讨结构的屈服机制及塑性铰开展情况。
研究结果表明:1)提出的模块化节点简化计算模型与实体模型应力分布规律一致,破坏形态相同,二者破坏模式均为模块梁屈服,梁端产生塑性铰破坏,且两者的荷载-位移曲线相近,弹性阶段的刚度相差不大,简化模型的初始刚度约为实体模型的0.84~0.91倍,在相同荷载作用下,简化模型的位移变形更大;进入弹塑性阶段后,实体模型的屈服荷载和极限承载力均大于简化模型,验证了简化计算模型是合理且偏于安全的;2)反应谱分析得到的模块化钢框架结构的周期振型、顶点位移、层间位移角和应力比等相关力学性能指标均满足抗震设计要求,结构的用钢量为84.02 kg/m2,处在合理用钢量范围内,整体结构的设计是合理的;3)模块化钢框架结构的弹塑性分析表明,罕遇地震下大部分结构构件仍处在线弹性阶段,只有少量构件达到屈服,塑性铰主要集中在模块梁端且模块梁先于模块柱屈服,结构属于“强柱弱梁”体系,在罕遇地震下具有良好的抗震性能。
模块化建筑作为预制程度最高的一种建筑结构体系,以其装配化程度高、施工速度快、环境干扰少、模块质量可控且隔声、防火、保温性能优良、可拆卸重复利用、绿色环保等显著优势成为建筑工业化的研究热点。我国在模块化建筑的研究与应用方面取得了一定成果,但针对模块化结构的研究大多集中在模块化节点和构件上,缺乏多高层模块结构在风、地震等荷载工况下的整体性能研究。为此,将对采用板式内套筒节点的模块化装配式钢框架进行整体结构的设计与分析,研究地震作用下结构的抗震性能。
为便于整体结构建模分析,根据模块间连接节点构造形式和传力特点对节点简化方式进行了研究,提出了模块化板式内套筒节点简化计算模型并与相应的实体模型做对比以进行合理性验证;采用MIDAS/Gen 2020建立模块化钢框架整体结构计算模型,对结构进行反应谱分析,并将计算结果与现行国家标准限值进行对比;研究了地震作用下模块化钢框架的结构动力响应,采用弹性及弹塑性时程分析法对结构进行抗震性能分析,探讨结构的屈服机制及塑性铰开展情况。
研究结果表明:1)提出的模块化节点简化计算模型与实体模型应力分布规律一致,破坏形态相同,二者破坏模式均为模块梁屈服,梁端产生塑性铰破坏,且两者的荷载-位移曲线相近,弹性阶段的刚度相差不大,简化模型的初始刚度约为实体模型的0.84~0.91倍,在相同荷载作用下,简化模型的位移变形更大;进入弹塑性阶段后,实体模型的屈服荷载和极限承载力均大于简化模型,验证了简化计算模型是合理且偏于安全的;2)反应谱分析得到的模块化钢框架结构的周期振型、顶点位移、层间位移角和应力比等相关力学性能指标均满足抗震设计要求,结构的用钢量为84.02 kg/m2,处在合理用钢量范围内,整体结构的设计是合理的;3)模块化钢框架结构的弹塑性分析表明,罕遇地震下大部分结构构件仍处在线弹性阶段,只有少量构件达到屈服,塑性铰主要集中在模块梁端且模块梁先于模块柱屈服,结构属于“强柱弱梁”体系,在罕遇地震下具有良好的抗震性能。
2022, 37(1): 21-30.
doi: 10.13206/j.gjgS21073002
摘要:
顺德德胜体育中心体育馆采用Geiger+Levy型组合方式索穹顶结构体系,平面投影为椭圆形,其中索穹顶长轴方向结构净跨124 m,短轴方向结构净跨105 m,为目前国内封闭金属屋面最大跨度索穹顶结构。为考察含斗屏的索穹顶结构在局部索(杆)破断或松弛后结构力学性能,采用有限元非线性动力分析方法进行断索(杆)或松弛下的连续倒塌分析。从构件层面和结构体系层面阐述索穹顶结构倒塌失效准则,最终确定以变形标准和破坏后剩余构件塑性铰开展机制的结构体系层面为倒塌失效准则,首先以受力较大的第3圈环索及相关斜索和撑杆的关键构件破断为例,进行含重型斗屏和不含重型斗屏计算模型的非线性动力连续倒塌分析,比较两种工况下倒塌过程的力学性能差异;其次在含重型斗屏的基础上进行不同位置的单根索(杆)或多根索(杆)的非线性动力断索(杆)分析,比较不同部位关键构件在结构体系中的力学作用;最后在含重型斗屏计算模型的基础上进行不同部位的索力松弛分析,考察不同部位索构件在不同程度松弛过程中结构的力学响应。
计算结果表明:采用Geiger+Levy型组合方式索穹顶结构具有良好的抗连续倒塌能力,悬挂斗屏作为集中悬挂质量对断索后结构动力响应具有一定的影响;通过考虑不同位置的断索分析,发现环索对结构的影响最大,且环索破断后结构仍具有良好的防连续倒塌能力,并提出了在实际工程设计中可采用双索或四索的设计思路来提高环索的防连续倒塌能力,提高结构在偶然荷载下的结构安全储备。
顺德德胜体育中心体育馆采用Geiger+Levy型组合方式索穹顶结构体系,平面投影为椭圆形,其中索穹顶长轴方向结构净跨124 m,短轴方向结构净跨105 m,为目前国内封闭金属屋面最大跨度索穹顶结构。为考察含斗屏的索穹顶结构在局部索(杆)破断或松弛后结构力学性能,采用有限元非线性动力分析方法进行断索(杆)或松弛下的连续倒塌分析。从构件层面和结构体系层面阐述索穹顶结构倒塌失效准则,最终确定以变形标准和破坏后剩余构件塑性铰开展机制的结构体系层面为倒塌失效准则,首先以受力较大的第3圈环索及相关斜索和撑杆的关键构件破断为例,进行含重型斗屏和不含重型斗屏计算模型的非线性动力连续倒塌分析,比较两种工况下倒塌过程的力学性能差异;其次在含重型斗屏的基础上进行不同位置的单根索(杆)或多根索(杆)的非线性动力断索(杆)分析,比较不同部位关键构件在结构体系中的力学作用;最后在含重型斗屏计算模型的基础上进行不同部位的索力松弛分析,考察不同部位索构件在不同程度松弛过程中结构的力学响应。
计算结果表明:采用Geiger+Levy型组合方式索穹顶结构具有良好的抗连续倒塌能力,悬挂斗屏作为集中悬挂质量对断索后结构动力响应具有一定的影响;通过考虑不同位置的断索分析,发现环索对结构的影响最大,且环索破断后结构仍具有良好的防连续倒塌能力,并提出了在实际工程设计中可采用双索或四索的设计思路来提高环索的防连续倒塌能力,提高结构在偶然荷载下的结构安全储备。
2022, 37(1): 31-38.
doi: 10.13206/j.gjgS21060801
摘要:
常见单板抗剪节点是将一块抗剪连接钢板直接焊接在钢管表面,这种节点连接方式常会造成焊缝周边区域的应力集中,焊缝开裂也是此类节点常见的失效模式。为了实现钢管混凝土柱与钢箱梁的装配式抗剪连接,研究了一种双侧贯通板式节点。节点中,使用两块抗剪连接板分别平行放置于钢管柱两个相对的管壁上的预留槽口中。两贯通板位于钢管内的部分采用钢管内灌注的混凝土进行锚固,钢管外的贯通板部分则分别紧贴钢箱梁的两块腹板,通过高强螺栓将其与梁腹板连接起来。这种装配式连接的施工现场无焊接作业,安装简便,易操作。为此建立了节点有限元模型,并用节点试验结果验证了模型的有效性。在此基础上,采用有限元方法,对原试验节点的设计做了优化改进。通过详细的参数分析,研究了梁柱初始间隙、贯通板厚度、螺栓规格、螺栓孔布置等参数对节点的应力分布、变形特点、承载力、延性、破坏模式等节点性能的影响。
研究表明:相比于贯通板上开椭圆形螺栓孔和使用穿芯螺栓,采用圆形螺栓孔和盲孔螺栓更有利于提高节点的承载力和延性;增大梁末端到钢管表面的初始间隙时,贯通板可以充分发挥其塑性变形能力,节点的转动能力会增强,但间隙过大时,板下部易发生受压屈曲,导致节点失效;增加板的厚度可以增强板的稳定性,提高节点的承载能力,但板的厚度不影响梁末端挤压到钢管表面时所转过的角度大小;螺栓的规格对节点整体的承载力和延性的影响很小,但其对节点的破坏模式的影响却很明显,当螺栓直径较小时易发生剪切破坏;螺栓的布置方式中,两列螺栓孔间过大的水平距离并不能明显改善贯通板的应力分布,边缘距离的增大使得板上的屈服区域充分扩展,增强了贯通板的塑性变形能力,节点的延性较其他节点明显增强,故建议使用五孔或四孔的双列或三列的布置方案,不宜采用单列螺栓孔布置方式。
常见单板抗剪节点是将一块抗剪连接钢板直接焊接在钢管表面,这种节点连接方式常会造成焊缝周边区域的应力集中,焊缝开裂也是此类节点常见的失效模式。为了实现钢管混凝土柱与钢箱梁的装配式抗剪连接,研究了一种双侧贯通板式节点。节点中,使用两块抗剪连接板分别平行放置于钢管柱两个相对的管壁上的预留槽口中。两贯通板位于钢管内的部分采用钢管内灌注的混凝土进行锚固,钢管外的贯通板部分则分别紧贴钢箱梁的两块腹板,通过高强螺栓将其与梁腹板连接起来。这种装配式连接的施工现场无焊接作业,安装简便,易操作。为此建立了节点有限元模型,并用节点试验结果验证了模型的有效性。在此基础上,采用有限元方法,对原试验节点的设计做了优化改进。通过详细的参数分析,研究了梁柱初始间隙、贯通板厚度、螺栓规格、螺栓孔布置等参数对节点的应力分布、变形特点、承载力、延性、破坏模式等节点性能的影响。
研究表明:相比于贯通板上开椭圆形螺栓孔和使用穿芯螺栓,采用圆形螺栓孔和盲孔螺栓更有利于提高节点的承载力和延性;增大梁末端到钢管表面的初始间隙时,贯通板可以充分发挥其塑性变形能力,节点的转动能力会增强,但间隙过大时,板下部易发生受压屈曲,导致节点失效;增加板的厚度可以增强板的稳定性,提高节点的承载能力,但板的厚度不影响梁末端挤压到钢管表面时所转过的角度大小;螺栓的规格对节点整体的承载力和延性的影响很小,但其对节点的破坏模式的影响却很明显,当螺栓直径较小时易发生剪切破坏;螺栓的布置方式中,两列螺栓孔间过大的水平距离并不能明显改善贯通板的应力分布,边缘距离的增大使得板上的屈服区域充分扩展,增强了贯通板的塑性变形能力,节点的延性较其他节点明显增强,故建议使用五孔或四孔的双列或三列的布置方案,不宜采用单列螺栓孔布置方式。
2022, 37(1): 39-45.
doi: 10.13206/j.gjgs21053001
摘要:
螺栓孔的端距Ld、边距Lz会影响输电铁塔中单颗螺栓连接单角钢构件承载力和其两端节点板尺寸,缩小Ld可降低连接区几何尺寸、减小或取消节点板,增加Ld可提高构件抗拉承载力。目前国内DL/T 5442—2020《输电线路杆塔制图和构造规定》中螺栓Ld、Lz均为固定值。为研究此类构件受拉承载力,进行∟56、∟80、∟90、∟110四种规格角钢单螺栓连接的材性试验和受拉试验,角钢材质为Q235B,高强螺栓直径16,24 mm,设置位移计测量试件变形和孔伸长量。试件加载后螺栓孔发生塑性变形而纵向伸长,达极限拉力时受压孔壁两侧及对应的角钢端面中部撕裂。依据试件参数建立连接板、角钢、螺栓的有限元模型,各部件接触面附近网格尺寸小于2 mm。
计算结果表明:有限元模型的高应力区与试件破坏区域相同,二者极限拉力平均相差5.8%,荷载-孔伸长量曲线与位移计测量结果相符。采用屈服强度fy=235 MPa、弹性模量E=2.06×105 MPa的钢材计算四组单螺栓(Ld=(0.8~3.7)d0)连接角钢模型:∟40×3、1M12,∟×3、1M16,∟50×4、1M16,∟63×5、1M20。
结果表明:螺孔直径大于螺杆的造成单剪连接时受压孔壁应力集中,在试件总伸长量较小时部分区域已产生塑性变形,随后试件失去初始刚度,螺栓孔不断伸长。模型采用基准端距时构件承载力Nrt约为DL/T 5486—2020《架空输电线路杆塔结构设计技术规定》中承载力Ncode的95%,四组试件的受拉承载力Nt约为极限拉力Nu的75%,国内DL/T 5486—2020有一定裕度。试件荷载-孔伸长量曲线的线性段长度、刚度变化位置、承载力受Ld和Lz共同影响,以Ld/Lz=1.5为分界主要发生两种破坏模式:小于临界值时试件发生端部剪切、撕裂破坏;超过临界值后逐渐转变成角钢净截面破坏,继续提高Ld对承载力影响不大。国内∟40角钢目前使用M16螺栓,采用M12螺栓后降低Lz/d0,可获得更高的承载力上限。EC 3、ASCE等标准中考虑了Ld、Lz对受拉承载力的影响,其材料强度等参数取值主要针对当地钢材,公式形式复杂。结合我国钢材的实际情况、输电铁塔计算框架,根据试验和模型结果给出包含承载力调整系数的计算方法,考虑了Ld与Lz的不同影响,对不同螺杆直径、角钢肢宽的构件用同一算式计算,适用于Ld=(1.0~3.0)d0范围内单螺栓单剪连接的热轧角钢构件受拉承载力计算。
螺栓孔的端距Ld、边距Lz会影响输电铁塔中单颗螺栓连接单角钢构件承载力和其两端节点板尺寸,缩小Ld可降低连接区几何尺寸、减小或取消节点板,增加Ld可提高构件抗拉承载力。目前国内DL/T 5442—2020《输电线路杆塔制图和构造规定》中螺栓Ld、Lz均为固定值。为研究此类构件受拉承载力,进行∟56、∟80、∟90、∟110四种规格角钢单螺栓连接的材性试验和受拉试验,角钢材质为Q235B,高强螺栓直径16,24 mm,设置位移计测量试件变形和孔伸长量。试件加载后螺栓孔发生塑性变形而纵向伸长,达极限拉力时受压孔壁两侧及对应的角钢端面中部撕裂。依据试件参数建立连接板、角钢、螺栓的有限元模型,各部件接触面附近网格尺寸小于2 mm。
计算结果表明:有限元模型的高应力区与试件破坏区域相同,二者极限拉力平均相差5.8%,荷载-孔伸长量曲线与位移计测量结果相符。采用屈服强度fy=235 MPa、弹性模量E=2.06×105 MPa的钢材计算四组单螺栓(Ld=(0.8~3.7)d0)连接角钢模型:∟40×3、1M12,∟×3、1M16,∟50×4、1M16,∟63×5、1M20。
结果表明:螺孔直径大于螺杆的造成单剪连接时受压孔壁应力集中,在试件总伸长量较小时部分区域已产生塑性变形,随后试件失去初始刚度,螺栓孔不断伸长。模型采用基准端距时构件承载力Nrt约为DL/T 5486—2020《架空输电线路杆塔结构设计技术规定》中承载力Ncode的95%,四组试件的受拉承载力Nt约为极限拉力Nu的75%,国内DL/T 5486—2020有一定裕度。试件荷载-孔伸长量曲线的线性段长度、刚度变化位置、承载力受Ld和Lz共同影响,以Ld/Lz=1.5为分界主要发生两种破坏模式:小于临界值时试件发生端部剪切、撕裂破坏;超过临界值后逐渐转变成角钢净截面破坏,继续提高Ld对承载力影响不大。国内∟40角钢目前使用M16螺栓,采用M12螺栓后降低Lz/d0,可获得更高的承载力上限。EC 3、ASCE等标准中考虑了Ld、Lz对受拉承载力的影响,其材料强度等参数取值主要针对当地钢材,公式形式复杂。结合我国钢材的实际情况、输电铁塔计算框架,根据试验和模型结果给出包含承载力调整系数的计算方法,考虑了Ld与Lz的不同影响,对不同螺杆直径、角钢肢宽的构件用同一算式计算,适用于Ld=(1.0~3.0)d0范围内单螺栓单剪连接的热轧角钢构件受拉承载力计算。
2022, 37(1): 46-52.
doi: 10.13206/j.gjgS21062901
摘要:
超高层结构是目前大型复杂结构发展的热点方向,其结构体系很多采用外钢框架-钢筋混凝土核心筒混合结构体系,并设有伸臂桁架加强层。由于钢结构外框筒和混凝土核心筒的材料不同,在施工期间的竖向变形也不同,过早连接伸臂桁架会给桁架自身带来较大的初始变形和初始内力,而过晚连接又可能导致结构刚度不完整,引起极端荷载条件下的结构安全问题。
以银川绿地中心南塔中的33~34层桁架及51~52层桁架为研究对象,采用ANSYS软件进行数值模拟,对比了5种工况不同连接时间对伸臂桁架结构内力、变形的影响,通过数值模拟结果得到最不利杆件在5种工况下的轴力、应力、变形曲线。根据分析结果可知:连接时间越晚,桁架构件轴力、桁架应力以及桁架变形均越小。根据伸臂桁架的轴力曲线可以得到:5种工况中,1~3号杆件的最大轴力分别为340,1 830,870 kN,而工况4时最大轴力分别为90,400,120 kN,分别减小了73.5%、78.1%和86.2%。根据伸臂桁架的变形曲线可以得到:5种工况中,1~3号杆件的最大变形为9.73,9.82,9.98 mm,而工况4时最大变形分别为3.26,3.43,3.27 mm,分别减小了66.4%、65.0%和67.2%。
银川绿地中心双子塔南塔在施工时,考虑结构收缩徐变时期较长,内外筒长期没有伸臂桁架的连接就难以形成更大的抗侧刚度,同时综合考虑工期及抵抗灾害荷载的能力,选取桁架响应相对较小的工况4,即在外框筒封顶施工段完成后进行了伸臂桁架的连接。在上下两层伸臂桁架连接合龙期间,根据前期部署的现场伸臂桁架施工监测系统数据分析显示,伸臂桁架的应变变化与数值模拟结果吻合较好,验证了所提出的连接时序优化算法的可靠性。
超高层结构是目前大型复杂结构发展的热点方向,其结构体系很多采用外钢框架-钢筋混凝土核心筒混合结构体系,并设有伸臂桁架加强层。由于钢结构外框筒和混凝土核心筒的材料不同,在施工期间的竖向变形也不同,过早连接伸臂桁架会给桁架自身带来较大的初始变形和初始内力,而过晚连接又可能导致结构刚度不完整,引起极端荷载条件下的结构安全问题。
以银川绿地中心南塔中的33~34层桁架及51~52层桁架为研究对象,采用ANSYS软件进行数值模拟,对比了5种工况不同连接时间对伸臂桁架结构内力、变形的影响,通过数值模拟结果得到最不利杆件在5种工况下的轴力、应力、变形曲线。根据分析结果可知:连接时间越晚,桁架构件轴力、桁架应力以及桁架变形均越小。根据伸臂桁架的轴力曲线可以得到:5种工况中,1~3号杆件的最大轴力分别为340,1 830,870 kN,而工况4时最大轴力分别为90,400,120 kN,分别减小了73.5%、78.1%和86.2%。根据伸臂桁架的变形曲线可以得到:5种工况中,1~3号杆件的最大变形为9.73,9.82,9.98 mm,而工况4时最大变形分别为3.26,3.43,3.27 mm,分别减小了66.4%、65.0%和67.2%。
银川绿地中心双子塔南塔在施工时,考虑结构收缩徐变时期较长,内外筒长期没有伸臂桁架的连接就难以形成更大的抗侧刚度,同时综合考虑工期及抵抗灾害荷载的能力,选取桁架响应相对较小的工况4,即在外框筒封顶施工段完成后进行了伸臂桁架的连接。在上下两层伸臂桁架连接合龙期间,根据前期部署的现场伸臂桁架施工监测系统数据分析显示,伸臂桁架的应变变化与数值模拟结果吻合较好,验证了所提出的连接时序优化算法的可靠性。