留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2021年  第36卷  第3期

显示方式:
综述
多元微合金化耐火钢研究进展
王鑫, 李昭东, 张可, 王文涛, 杨忠民, 雍岐龙
2021, 36(3): 1-11. doi: 10.13206/j.gjgS20073101
摘要:
随着社会经济的不断发展,建筑行业对于建筑材料强度的要求也越来越高,建筑结构用钢的组织类型也由铁素体/珠光体向铁素体/贝氏体、全贝氏体和多相多尺度亚稳(M3)组织方向发展。耐火钢以其优异的综合性能和良好的耐火安全性等优点,被广泛应用于高层及大跨度建筑中。对于耐火性能的调控方式也从高成本的高Mo (≥0.40%)加单一元素的微合金化为主的方式向经济型的节Mo (≤0.30%)加Nb、V和Ti等多元复合微合金化方式发展。详细介绍了国内外耐火钢的发展历史、产品种类和应用工程以及提高耐火钢室温强度和耐火性能的理论和技术,对比研究了不同组织和微合金元素的耐火性能的差异。研究表明,多元复合微合金化钢在室温和600℃高温的性能要优于单一元素的微合金化钢的性能,因此提出了多元复合微合金纳米碳化物遇火析出增强高温耐火性能的新思路。针对Q345~Q690不同强度级别耐火钢,形成了差异化的合金与组织设计及其热轧/热处理技术,利用扫描电镜(SEM)观察不同强度级别耐火钢的组织类型,阐明了典型多元复合微合金化耐火钢升温-加载过程中显微组织和力学性能的变化规律。采用透射电镜(TEM)、物理化学相分析和三维原子探针(3DAP)等研究方法观察和统计热轧态、不同热处理态和600℃高温拉伸态析出相的分布、尺寸和数量,探讨了纳米碳化物高温沉淀强化、基体组织高温稳定的耐火机理。研究表明,经过弛豫处理的Q345级别钢板为先共析铁素体+少量贝氏体/珠光体组织,具有较高的细晶和沉淀强化增量;轧后直接进行层流冷却的Q345级别钢板为全贝氏体组织,有着较高的位错和固溶强化增量,600℃拉伸的屈服强度(Yield Strength,YS)仍能达到327 MPa。Q460级别钢板为全贝氏体组织,600℃时组织具有良好的高温稳定性,随着在600℃时保温时间的延长,直径小于10 nm的纳米析出相显著增加。Q690级别钢板为马氏体+亚稳奥氏体+纳米析出相和低碳高强贝氏体组织,室温下具有690 MPa的屈服强度和良好的延伸性能,经600℃高温拉伸试验后,其屈服强度不低于室温标准屈服强度的2/3。采用多元微合金化设计、遇火纳米析出强化的调控思路可实现Q345~Q690不同级别耐火钢的耐火功能。
科研
微合金元素对690 MPa级耐火钢组织性能的影响
杜菁菁, 杨忠民, 王鑫, 曹燕光, 李昭东, 余万华
2021, 36(3): 12-21. doi: 10.13206/j.gjgS20070804
摘要:
针对690 MPa级空冷贝氏体耐火钢目前存在的屈强比过高无法满足抗震性能,以及冲击韧性过低和高温600℃下屈服强度降低的问题,设计了两种成分的低碳贝氏体耐火钢,分别为低V高Nb+Ti和高V低Nb+Ti两种成分,目的是获得室温屈服强度大于690 MPa,屈强比小于0.85,高温600℃屈服强度大于室温屈服强度的2/3,即460 MPa,以及-40℃低温冲击韧性均值大于69 J的高强韧耐火钢。试验过程中首先在冶炼炉进行冶炼,后将铸锭加热到1 200℃以上保温,在900℃左右锻造,锻造完成后采用两阶段控制轧制工艺。为了改善试验钢的力学性能和显微组织,对试验钢采取最终热处理方法,热处理工艺采用正火空冷+回火空冷,正火温度选取Ac3以上30~50℃之间,回火温度采用贝氏体转变温度范围内的温度。对热轧态的试样和经过热处理后的试样进行对比分析,通过金相、扫描等对试样显微组织进行分析,通过常温力学拉伸试验、600℃高温拉伸试验和-40℃低温冲击试验,对试验钢的力学性能进行对比分析,同时对微合金元素Nb、V、Ti对过冷奥氏体连续冷却转变曲线(CCT曲线)的影响进行了研究分析。结果表明:通过微合金元素Nb、V、Ti的调整,能使F+P转变线明显右移,贝氏体转变线趋于扁平化,组织由原来的粒状贝氏体转变为粒状贝氏体与板条贝氏体的混合组织。通过增加V,降低Nb+Ti的含量,对热轧态的组织对比,发现可以获得的粒状贝氏体组织中M-A岛更加细小均匀,更有利于改善材料的塑韧性。对热处理后的试验钢的组织和性能进行对比发现,通过增加V,降低Nb+Ti的含量,组织由粒状贝氏体转变为粒状贝氏体与板条贝氏体的混合组织,而板条贝氏体对试验钢的力学性能有利。Y1试验钢中大块的粒状贝氏体组织对试验钢的低温冲击韧性不利,Y2试验钢中细小的粒状与板条状贝氏体的混合组织,能显著改善试验钢的冲击韧性。因此,在实际生产中,应尽量获得细化的板条贝氏体组织才能使材料的性能更好。与此同时,对比相同成分的热处理后的试验钢发现,回火温度对试验钢的屈服强度的影响更为明显,对抗拉强度影响较小,通过采取合理的调控回火温度,发现Y1试验钢在350℃时力学性能最佳,但高温屈服强度和低温冲击韧性不理想,而Y2试验钢在400℃时力学性能最佳。综上所述,Y2经过正火+400℃回火、1 h热处理工艺后具有优秀的综合性能,即抗拉强度为1 009 MPa、屈服强度为855 MPa,600℃的屈服强度为481 MPa,满足屈服强度大于室温屈服强度的2/3,-40℃冲击功均值为145 J,大于69 J,满足690 MPa级耐火钢的要求。
460FRW抗震耐蚀耐火钢材料性能及抗力分项系数研究
何文涛, 刘楚涵, 王明, 南东亚, 吴昌栋, 刘鹏, 李晓润
2021, 36(3): 22-27. doi: 10.13206/j.gjgS20100210
摘要:
为适应国内外建筑钢结构行业的迅猛发展,满足钢结构对建筑用钢板力学性能和特殊性能的要求,首钢自主研发了460 MPa抗震耐腐蚀耐火钢,钢板的屈服强度为460 MPa (简称460FRW钢)。以首钢研发的不同规格的460FRW试制钢板为样本试件,对其进行拉伸和冲击试验,并对试验数据进行统计分析,为首钢生产的460FRW抗震耐蚀耐火钢用于工程设计时提供设计强度建议值。试验采用的460FRW钢板由首钢提供,厚度规格分别为10,14,20,28 mm。根据钢板的强度级别和试件截面尺寸,使试件的屈服荷载位于试验机名义拉力的30%~60%之间,处于试验机柔度影响的合理范围以内。试验机由计算机自动控制,能自动判别并输出上、下屈服强度和抗拉强度,以便进行材料不确定性分析。通过试验,得到460FRW钢的屈服强度的试验数据。根据试验数据,进一步计算钢板的材料性能不确定性统计参数、几何特性不确定性统计参数、计算模式不确定性统计参数,综合此三种不确定性统计参数,计算得到460FRW钢的抗力不确定性统计参数。结合荷载不确定性统计参数,计算得到460FRW钢典型构件轴拉、轴压、偏压(弯矩作用在平面内、外)和型钢梁(弹性和塑性破坏)在四种荷载比ρ下的抗力分项系数。分析可知:当荷载比ρ=2.00时,型钢梁弹性破坏的抗力分项系数最高,以此作为460FRW钢抗力分项系数的统计分析值。
建筑结构用抗震耐蚀耐火钢Q460FRW低温冲击韧性性能分析
王志明, 吕尚霖, 王鑫, 李昭东, 刘锟, 马龙腾
2021, 36(3): 28-33. doi: 10.13206/j.gjgS20061601
摘要:
为验证建筑结构抗震耐蚀耐火钢Q460 FRW抗低温冲击性能的设计要求,用SANS型摆锤式冲击试验机对Q460 FRW钢开展抗低温冲击韧性试验,并进行了试样断口微观形貌的分析。根据GB/T 229—2007《金属材料夏比摆锤冲击试验方法》,在-20、-40、-60℃环境温度下对10、28 mm两种规格Q460FRW钢试件进行抗低温冲击试验,获得了冲击能值AkV,得到了两个系列Q460FRW钢在各低温点的冲击强度随温度的变化规律,并对试件进行了室温和低温拉伸强度、屈服强度和延伸率试验。同时,用扫描电镜在放大1 000倍下对两种规格Q460FRW钢试件分析冲断后的断口微观形貌。试验结果表明:Q460 FRW钢在低温环境下能保持较高的冲击功和良好的冲击韧性。同时,在-20,-40,-60℃的低温环境下,冲击韧性随温度的降低而略有提高。两个系列Q460 FRW钢的纵向冲击功值均大于34 J,符合GB/T 19879—2005《建筑结构用钢板》的要求,在低温下满足抗冲击性能设计要求。扫描电镜观测分析表明,在冲击拉伸过程中,裂纹从试样中心的纤维区向外扩展,在裂纹区附近发生了较大的塑性变形,形成了较大的剪切缺口,表明它们都是韧性的,且从扫描电镜图中未看出断裂韧窝的大小和深度具有显著的差异。
显微组织对460 MPa级抗震耐火建筑钢性能影响的研究
丛菁华, 王学敏, 李江文, 杜平, 武凤娟
2021, 36(3): 34-38. doi: 10.13206/j.gjgS20070801
摘要:
为研究不同组织对于建筑用抗震耐火钢的性能影响,设计一种节钼(Mo)型含量的试验钢,其组织由铁素体+贝氏体组成。研究发现,采用不同的轧制工艺,可获得具有不同贝氏体体积分数的建筑钢。由于奥氏体变形促进了铁素体相变,二阶段轧制相较于一阶段轧制会获得更多体积分数的铁素体组织,经过铁素体相变后,保留的未转变奥氏体体积分数会减少,因而会获得更多体积分数的贝氏体组织。通过对显微组织、室温及高温力学性能进行分析研究,发现包括一阶段轧制和二阶段轧制的两种轧制工艺都能获得建筑钢原型,其室温性能优异,符合460 MPa级钢的强度标准,屈强比小于0.80,表明钢种具有优异的抗震性能。高温力学性能测试及分析结果表明,具有较多贝氏体体积分数的试验钢具有更优异的耐火性能,一阶段轧制钢的高温屈服强度约为402.5 MPa,二阶段轧制钢的高温屈服强度约为294.1 MPa,前者比后者高约108.4 MPa。在600℃高温下,生成大量的大尺寸合金渗碳体。同时通过高温应力-应变曲线可以测量出,一阶段轧制试验钢的高温弹性模量约为104.6 GPa,明显高于二阶段轧制试验钢的87.5 GPa。通过对600℃ 3 h后试验钢的几何必须位错密度进行统计,可以看出,贝氏体体积分数更高的一阶段轧制试验钢的位错密度明显高于二阶段轧制试验钢的。通过强度贡献计算可以看出,一阶段轧制试验钢在600℃时的位错强化贡献值约为141.7 MPa,而二阶段轧制试验钢只有约91.7 MPa,表明贝氏体具有更高的高温稳定性。更高贝氏体体积分数的钢具有更加优异的耐火性能,其在耐火试验中位错密度和高温弹性模量仍保持较高,位错强化带来的强度贡献是其耐火性能差异的最重要原因。
Q460GJEZ35抗震耐蚀耐火特厚钢板的研发
袁继恒, 李忠波, 杨东, 唐郑磊, 杨阳, 符可义, 薛艳生
2021, 36(3): 39-45. doi: 10.13206/j.gjgS20070802
摘要:
随着越来越多超高层、大跨度建筑工程的开工建设,对建筑结构用钢高强、长寿命、服役安全性等方面提出了更高的要求,发展460 MPa级抗震耐蚀耐火功能复合化建筑用钢具有广阔的市场应用前景。此钢种具有高强韧性、低屈强比、抗层状撕裂和良好的焊接性等性能特点,又兼备耐火性、耐候性等功能,可实现高层建筑用钢厚度减薄,节约钢材用量,同时在不使用防火涂层的情况下能保证高楼大厦在火灾中具备较长时间的承载能力,可广泛应用于较高耐火耐候等级的超高层建筑、大型厂房等钢结构建筑。通过对460 MPa级抗震耐蚀耐火建筑用钢关键技术的对比分析,采用铁水KR脱硫—转炉冶炼—钢包白渣精炼(LF)+钢包真空脱气(VD)精炼—铜板结晶器水冷钢锭模浇铸—钢锭加热—轧机成型—QLT热处理工艺进行试制。成分设计方面,其核心是耐火与耐蚀的复合微合金化设计兼顾其强化作用、晶粒细化作用、耐腐蚀作用、纳米析出相析出行为。为提高其焊接性能,将碳当量控制在0.55以内,通过Cu、Cr、Ni、Mo元素的合理配比实现其高强韧性、耐火、耐蚀功能复合化,同时为降低成本,将贵重合金元素Mo控制在0.30%以下;钢水冶炼方面通过精料入炉、纯净钢冶炼技术实现钢中超低P、超低S、超低O、高纯净度;原始坯料成型采用改进型铜板结晶器水冷锭模,通过定向凝固技术实现钢锭内部微缺陷化;轧制环节通过硬壳法轧制促进表面硬化以使轧制时轧制力渗透至钢板芯部,在提高内部质量的同时实现显微组织均匀细化;热处理环节通过两相区淬火,实现软硬相合理搭配,降低屈强比、细化晶粒,提高冲击韧性。通过成分设计—转炉冶炼—水冷模浇铸—轧制—离线热处理的工艺设计,开发出460 MPa级抗震耐蚀耐火钢板,其屈服强度控制在500~520 MPa、抗拉强度控制在630~650 MPa、伸长率24%~27%,屈强比0.79~0.81,厚度方向断面收缩率均值70%,600℃保温3 h的屈服强度为339~367 MPa,-40℃纵向冲击功200 J以上,耐大气腐蚀性能指数7.5以上,可生产钢板最大厚度150 mm,最大宽度3 800 mm,最大长度120 000 mm。
轧制温度对耐候热轧H型钢力学性能的影响
夏勐, 陈辉, 汪杰, 彭林, 何军委, 邢军, 彦井成
2021, 36(3): 46-51. doi: 10.13206/j.gjgS20031202
摘要:
根据热轧H型钢翼缘厚度方向变形集中在万能轧制阶段的特点,将万能阶段开轧温度设定在800~1 000℃,其余主要工艺参数不变。通过对热轧H型钢进行力学性能检验及显微组织对比分析,发现铁素体晶粒尺寸及外形对产品力学性能有至关重要的影响,而万能阶段开轧温度对铁素体晶粒尺寸及外形存在显著影响。当开轧温度在1 000~950℃时,虽然能够实现奥氏体动态再结晶,但在轧后分别从900和850℃空冷时,再结晶晶粒长大迅速,也易出现反常长大。当开轧温度为1 000℃时,铁素晶粒尺寸不一,存在明显的混晶,当温度降低至950℃时,虽然混晶情况有所改善,但依然无法消除。在温度降低至900℃时,不仅能够完成奥氏体动态再结晶,而且轧后空冷起始温度降低至800℃,再结晶晶粒长大被抑制,形成了细小且均匀的初始奥氏体组织,此时的铁素体晶粒为10~30 μm的等轴状。当温度进一步降低至850~800℃时,因无法达到促进奥氏体动态再结晶的热激活能需求,仅在未再结晶区进行了变形,最终形成扁平状铁素体晶粒,长轴与短轴尺寸比例接近2 ∶1,长轴尺寸减小不明显,短轴尺寸进一步减小。正因为如此,随着开轧温度从1 000℃降低至900℃,铁素体晶粒尺寸减小,从而增加了晶界面积,降低了应力集中程度,增大了瞬时变形的均匀分配能力,使得产品屈服强度从369 MPa升高至415 MPa,抗拉强度从508 MPa升高至546 MPa,断后伸长率从30.0%升高至31.5%,低温冲击功均值从36 J提升至99 J;当温度降低至850~800℃时,扁平状铁素体晶粒进一步增大了晶界面积,使得产品屈服强度和抗拉强度分布进一步升高至468 MPa和567 MPa,但由于长、短轴差距增大,导致塑性变形时需要协调转动而产生畸变能,断后伸长率降低至27.5%,低温冲击功均值提升至109 J,此时屈强比已达到0.83。鉴于降低开轧温度影响生产节奏,同时考虑万能轧机负荷、能耗及辊耗等经济因素,900~850℃是较为理想的开轧温度区间,此时产品不仅强度及塑性指标均保持在较高的水平,而且韧性指标大幅提升,耐候热轧H型钢的综合力学性能得到明显改善。
装配式建筑钢结构用耐蚀钢材的腐蚀性研究及工程应用
范建文, 孙国强, 高勇刚, 陈鹰, 王启丞, 董瀚
2021, 36(3): 52-57. doi: 10.13206/j.gjgS20021001
摘要:
装配式建筑钢结构具有节能、环保、资源可循环利用的特点,符合我国未来建筑发展方向。但普通钢材易受腐蚀,钢材表面防腐是目前钢结构设计中必须考虑的内容。由于防腐作业成本高,并且除锈产生粉尘,涂料有机化学物质、镀层金属对大气及土壤产生污染,是制约建筑钢结构发展的重要因素。故开发免涂装新型钢材,降低加工成本,减少环境污染,对于建筑钢结构发展具有重大意义。为此,在钢中添加Ni、Cr、Cu合金元素满足材料耐大气腐蚀性能要求,结合型钢轧制工艺特点,采用V微合金化,轧后冷却过程中V (C,N)弥散析出强化,研发了Q390级抗震耐候热轧H型钢(Q390NHD),采用周浸对比试验研究了其耐蚀性,分析了在大气中长期暴露的腐蚀问题,论证了耐候钢作为装配式建筑钢结构材料的可行性。Q390NHD级型钢的主要化学成分范围:m(C)≤0.12%,m(Si)≤0.50%,m(Mn)≤1.50%,0.20%≤m(Ni)≤0.65%,0.30%≤m(Cr)≤1.25%,0.20%≤m(Cu)≤0.55%,m(V)≤0.12%;力学性能:下屈服强度ReL在400 MPa以上,抗拉强度Rm在560~600 MPa之间,屈强比不大于0.80,短比例试样断后伸长率不小于25%,-20℃夏比冲击功不小于34 J/cm2,满足GB 50017—2017《钢结构设计标准》中采用抗震性能化设计的钢结构构件材料性能要求。72 h周浸试验中,Q390NHD钢的腐蚀速率为1.665 g/(m2·h),是普碳钢的47.0%,其耐蚀性是普通钢的2倍多,与09CuPCrNiA相当。参照ISO 11844-1∶2006标准分析,Q390NHD型钢70 a的腐蚀厚度,若按照室内腐蚀性IC3级给出的腐蚀速率上限估算,总腐蚀量不超过0.031 mm;达到IC4级时,不超过0.3 mm;即使室内最严重腐蚀情况(IC5级),也不超过0.7 mm。因此,只要适当增加腐蚀裕量,在我国大部分地区,将Q390NHD钢应用于普通民用办公及住宅钢结构建筑中是可以免涂装的。